Vote for your favorite mineral in #MinCup25! - Calcite vs. Perovskite
This match of heavy hitters is bound to end in heartbreak as classic calcite faces off against futuristic perovskite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Arthishri, K., Balasubram, R., Kathirvelu, Parkavi, P. Simon, Sishaj, Amirtharaj, Rengarajan (2014) Maximum Power Point Tracking of Photovoltaic Generation System using Artificial Neural Network with Improved Tracking Factor. Journal of Applied Sciences, 14. 1858-1864 doi:10.3923/jas.2014.1858.1864

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleMaximum Power Point Tracking of Photovoltaic Generation System using Artificial Neural Network with Improved Tracking Factor
JournalJournal of Applied Sciences
AuthorsArthishri, K.Author
Balasubram, R.Author
Kathirvelu, ParkaviAuthor
P. Simon, SishajAuthor
Amirtharaj, RengarajanAuthor
Year2014 (December 1)Volume14
PublisherScience Alert
DOIdoi:10.3923/jas.2014.1858.1864Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID10343702Long-form Identifiermindat:1:5:10343702:8
GUID0
Full ReferenceArthishri, K., Balasubram, R., Kathirvelu, Parkavi, P. Simon, Sishaj, Amirtharaj, Rengarajan (2014) Maximum Power Point Tracking of Photovoltaic Generation System using Artificial Neural Network with Improved Tracking Factor. Journal of Applied Sciences, 14. 1858-1864 doi:10.3923/jas.2014.1858.1864
Plain TextArthishri, K., Balasubram, R., Kathirvelu, Parkavi, P. Simon, Sishaj, Amirtharaj, Rengarajan (2014) Maximum Power Point Tracking of Photovoltaic Generation System using Artificial Neural Network with Improved Tracking Factor. Journal of Applied Sciences, 14. 1858-1864 doi:10.3923/jas.2014.1858.1864
In(n.d.) Journal of Applied Sciences Vol. 14. Science Alert


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 4, 2025 17:19:28
Go to top of page