Vote for your favorite mineral in #MinCup25! - Titanite vs. Thortveitite
It's a pair of T-minerals with as versatile #titanite faces off against the home of rare earth elements #thortveitite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Komiske, Patrick T., Metodiev, Eric M., Nachman, Benjamin, Schwartz, Matthew D. (2018) Learning to classify from impure samples with high-dimensional data. Physical Review D, 98 (1). doi:10.1103/physrevd.98.011502

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleLearning to classify from impure samples with high-dimensional data
JournalPhysical Review D
AuthorsKomiske, Patrick T.Author
Metodiev, Eric M.Author
Nachman, BenjaminAuthor
Schwartz, Matthew D.Author
Year2018 (July 16)Volume98
Issue1
PublisherAmerican Physical Society (APS)
DOIdoi:10.1103/physrevd.98.011502Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID10973911Long-form Identifiermindat:1:5:10973911:9
GUID0
Full ReferenceKomiske, Patrick T., Metodiev, Eric M., Nachman, Benjamin, Schwartz, Matthew D. (2018) Learning to classify from impure samples with high-dimensional data. Physical Review D, 98 (1). doi:10.1103/physrevd.98.011502
Plain TextKomiske, Patrick T., Metodiev, Eric M., Nachman, Benjamin, Schwartz, Matthew D. (2018) Learning to classify from impure samples with high-dimensional data. Physical Review D, 98 (1). doi:10.1103/physrevd.98.011502
In(2018, July) Physical Review D Vol. 98 (1) American Physical Society (APS)


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 11, 2025 02:56:38
Go to top of page