Vote for your favorite mineral in #MinCup25! - Kosmochlor vs. Azurite
It's a battle of green vs blue as rare but vibrant chromium-bearing kosmochlor up against the deep blue copper alteration mineral azurite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Ou, Junke, Zhang, Yongzhi, Chen, Li, Zhao, Qian, Meng, Yan, Guo, Yong, Xiao, Dan (2015) Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries. Journal of Materials Chemistry A, 3. 6534-6541 doi:10.1039/c4ta06614f

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleNitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries
JournalJournal of Materials Chemistry A
AuthorsOu, JunkeAuthor
Zhang, YongzhiAuthor
Chen, LiAuthor
Zhao, QianAuthor
Meng, YanAuthor
Guo, YongAuthor
Xiao, DanAuthor
Year2015Volume3
PublisherRoyal Society of Chemistry (RSC)
DOIdoi:10.1039/c4ta06614fSearch in ResearchGate
Generate Citation Formats
Mindat Ref. ID12821539Long-form Identifiermindat:1:5:12821539:7
GUID0
Full ReferenceOu, Junke, Zhang, Yongzhi, Chen, Li, Zhao, Qian, Meng, Yan, Guo, Yong, Xiao, Dan (2015) Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries. Journal of Materials Chemistry A, 3. 6534-6541 doi:10.1039/c4ta06614f
Plain TextOu, Junke, Zhang, Yongzhi, Chen, Li, Zhao, Qian, Meng, Yan, Guo, Yong, Xiao, Dan (2015) Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries. Journal of Materials Chemistry A, 3. 6534-6541 doi:10.1039/c4ta06614f
In(2015) Journal of Materials Chemistry A Vol. 3. Royal Society of Chemistry (RSC)


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 9, 2025 14:05:17
Go to top of page