Choi, Jieun, Lee, Juyong (2021) V-Dock: Fast Generation of Novel Drug-like Molecules Using Machine-Learning-Based Docking Score and Molecular Optimization. International Journal of Molecular Sciences, 22 (21) 11635pp. doi:10.3390/ijms222111635
Reference Type | Journal (article/letter/editorial) | ||
---|---|---|---|
Title | V-Dock: Fast Generation of Novel Drug-like Molecules Using Machine-Learning-Based Docking Score and Molecular Optimization | ||
Journal | International Journal of Molecular Sciences | ||
Authors | Choi, Jieun | Author | |
Lee, Juyong | Author | ||
Year | 2021 (October 27) | Volume | 22 |
Issue | 21 | ||
Publisher | MDPI AG | ||
DOI | doi:10.3390/ijms222111635Search in ResearchGate | ||
Generate Citation Formats | |||
Mindat Ref. ID | 13706013 | Long-form Identifier | mindat:1:5:13706013:1 |
GUID | 0 | ||
Full Reference | Choi, Jieun, Lee, Juyong (2021) V-Dock: Fast Generation of Novel Drug-like Molecules Using Machine-Learning-Based Docking Score and Molecular Optimization. International Journal of Molecular Sciences, 22 (21) 11635pp. doi:10.3390/ijms222111635 | ||
Plain Text | Choi, Jieun, Lee, Juyong (2021) V-Dock: Fast Generation of Novel Drug-like Molecules Using Machine-Learning-Based Docking Score and Molecular Optimization. International Journal of Molecular Sciences, 22 (21) 11635pp. doi:10.3390/ijms222111635 | ||
In | (2021, November) International Journal of Molecular Sciences Vol. 22 (21) MDPI AG |
See Also
These are possibly similar items as determined by title/reference text matching only.