Vote for your favorite mineral in #MinCup25! - Titanite vs. Thortveitite
It's a pair of T-minerals with as versatile #titanite faces off against the home of rare earth elements #thortveitite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Webb, Alison L., Malin, Gill, Hopkins, Frances E., Ho, Kai Lam, Riebesell, Ulf, Schulz, Kai G., Larsen, Aud, Liss, Peter S. (2016) Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactions. Environmental Chemistry, 13 (2) 314 doi:10.1071/en14268

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleOcean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactions
JournalEnvironmental Chemistry
AuthorsWebb, Alison L.Author
Malin, GillAuthor
Hopkins, Frances E.Author
Ho, Kai LamAuthor
Riebesell, UlfAuthor
Schulz, Kai G.Author
Larsen, AudAuthor
Liss, Peter S.Author
Year2016Volume13
Issue2
PublisherCSIRO Publishing
DOIdoi:10.1071/en14268Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID14444299Long-form Identifiermindat:1:5:14444299:9
GUID0
Full ReferenceWebb, Alison L., Malin, Gill, Hopkins, Frances E., Ho, Kai Lam, Riebesell, Ulf, Schulz, Kai G., Larsen, Aud, Liss, Peter S. (2016) Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactions. Environmental Chemistry, 13 (2) 314 doi:10.1071/en14268
Plain TextWebb, Alison L., Malin, Gill, Hopkins, Frances E., Ho, Kai Lam, Riebesell, Ulf, Schulz, Kai G., Larsen, Aud, Liss, Peter S. (2016) Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactions. Environmental Chemistry, 13 (2) 314 doi:10.1071/en14268
In(2016) Environmental Chemistry Vol. 13 (2) CSIRO Publishing


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 11, 2025 07:28:08
Go to top of page