Vote for your favorite mineral in #MinCup25! - Stibnite vs. Okenite
It's a battle of dark and light as soft, dramatic stibnite goes up against adorable cottonballs of Okenite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Gao, Li, Feng, Ying, Hu, Shaohui, Xin, Xiangyang (2022) Magnetostructural Transition and Magnetocaloric Effect with Negligible Magnetic Hysteresis in MnCoGe1.02−xGax Alloys. Metals, 12 (7) 1143 doi:10.3390/met12071143

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleMagnetostructural Transition and Magnetocaloric Effect with Negligible Magnetic Hysteresis in MnCoGe1.02−xGax Alloys
JournalMetals
AuthorsGao, LiAuthor
Feng, YingAuthor
Hu, ShaohuiAuthor
Xin, XiangyangAuthor
Year2022 (July 5)Volume12
Issue7
PublisherMDPI AG
DOIdoi:10.3390/met12071143Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID15204088Long-form Identifiermindat:1:5:15204088:0
GUID0
Full ReferenceGao, Li, Feng, Ying, Hu, Shaohui, Xin, Xiangyang (2022) Magnetostructural Transition and Magnetocaloric Effect with Negligible Magnetic Hysteresis in MnCoGe1.02−xGax Alloys. Metals, 12 (7) 1143 doi:10.3390/met12071143
Plain TextGao, Li, Feng, Ying, Hu, Shaohui, Xin, Xiangyang (2022) Magnetostructural Transition and Magnetocaloric Effect with Negligible Magnetic Hysteresis in MnCoGe1.02−xGax Alloys. Metals, 12 (7) 1143 doi:10.3390/met12071143
In(2022, July) Metals Vol. 12 (7) MDPI AG


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 2, 2025 05:02:57
Go to top of page