Vote for your favorite mineral in #MinCup25! - Carpathite vs. Leucite
Brace for oddness in a match between one of the very few hydrocarbon minerals carpathite and the temperature-flipping mineral leucite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Jiang, Yong, Lu, Jie, Liu, Wei, Xing, Cong, Lu, Shangying, Liu, Xiaoyu, Xu, Yi, Zhang, Jiujun, Zhao, Bing (2022) Novel Polymer/Barium Intercalated Vanadium Pentoxide with Expanded Interlayer Spacing as High-Rate and Durable Cathode for Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 14 (15) 17415-17425 doi:10.1021/acsami.2c01698

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleNovel Polymer/Barium Intercalated Vanadium Pentoxide with Expanded Interlayer Spacing as High-Rate and Durable Cathode for Aqueous Zinc-Ion Batteries
JournalACS Applied Materials & Interfaces
AuthorsJiang, YongAuthor
Lu, JieAuthor
Liu, WeiAuthor
Xing, CongAuthor
Lu, ShangyingAuthor
Liu, XiaoyuAuthor
Xu, YiAuthor
Zhang, JiujunAuthor
Zhao, BingAuthor
Year2022 (April 20)Volume14
Issue15
PublisherAmerican Chemical Society (ACS)
DOIdoi:10.1021/acsami.2c01698Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID15280227Long-form Identifiermindat:1:5:15280227:3
GUID0
Full ReferenceJiang, Yong, Lu, Jie, Liu, Wei, Xing, Cong, Lu, Shangying, Liu, Xiaoyu, Xu, Yi, Zhang, Jiujun, Zhao, Bing (2022) Novel Polymer/Barium Intercalated Vanadium Pentoxide with Expanded Interlayer Spacing as High-Rate and Durable Cathode for Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 14 (15) 17415-17425 doi:10.1021/acsami.2c01698
Plain TextJiang, Yong, Lu, Jie, Liu, Wei, Xing, Cong, Lu, Shangying, Liu, Xiaoyu, Xu, Yi, Zhang, Jiujun, Zhao, Bing (2022) Novel Polymer/Barium Intercalated Vanadium Pentoxide with Expanded Interlayer Spacing as High-Rate and Durable Cathode for Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 14 (15) 17415-17425 doi:10.1021/acsami.2c01698
In(2022, April) ACS Applied Materials & Interfaces Vol. 14 (15) American Chemical Society (ACS)


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 6, 2025 05:34:30
Go to top of page