Reference Type | Journal (article/letter/editorial) |
---|
Title | Predict Ionization Energy of Molecules Using Conventional and Graph-Based Machine Learning Models |
---|
Journal | Journal of Chemical Information and Modeling |
---|
Authors | Liu, Yufeng | Author |
---|
Li, Zhenyu | Author |
Year | 2023 (February 13) | Volume | 63 |
---|
Issue | 3 |
---|
Publisher | American Chemical Society (ACS) |
---|
DOI | doi:10.1021/acs.jcim.2c01321Search in ResearchGate |
---|
| Generate Citation Formats |
Mindat Ref. ID | 15705432 | Long-form Identifier | mindat:1:5:15705432:5 |
---|
|
GUID | 0 |
---|
Full Reference | Liu, Yufeng, Li, Zhenyu (2023) Predict Ionization Energy of Molecules Using Conventional and Graph-Based Machine Learning Models. Journal of Chemical Information and Modeling, 63 (3) 806-814 doi:10.1021/acs.jcim.2c01321 |
---|
Plain Text | Liu, Yufeng, Li, Zhenyu (2023) Predict Ionization Energy of Molecules Using Conventional and Graph-Based Machine Learning Models. Journal of Chemical Information and Modeling, 63 (3) 806-814 doi:10.1021/acs.jcim.2c01321 |
---|
In | (2023, February) Journal of Chemical Information and Modeling Vol. 63 (3) American Chemical Society (ACS) |
---|
These are possibly similar items as determined by title/reference text matching only.