Vote for your favorite mineral in #MinCup25! - Baryte vs. Hematite
It's a heavyweight match between industrial powerhouses as soft #baryte competes against rusty red #hematite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Zuo, Ke, Kranjc, Agata, Capelli, Riccardo, Rossetti, Giulia, Nechushtai, Rachel, Carloni, Paolo (2023) Metadynamics simulations of ligands binding to protein surfaces: a novel tool for rational drug design. Physical Chemistry Chemical Physics, 25 (20) 13819-13824 doi:10.1039/d3cp01388j

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleMetadynamics simulations of ligands binding to protein surfaces: a novel tool for rational drug design
JournalPhysical Chemistry Chemical Physics
AuthorsZuo, KeAuthor
Kranjc, AgataAuthor
Capelli, RiccardoAuthor
Rossetti, GiuliaAuthor
Nechushtai, RachelAuthor
Carloni, PaoloAuthor
Year2023Volume25
Issue20
PublisherRoyal Society of Chemistry (RSC)
DOIdoi:10.1039/d3cp01388jSearch in ResearchGate
Generate Citation Formats
Mindat Ref. ID15860839Long-form Identifiermindat:1:5:15860839:8
GUID0
Full ReferenceZuo, Ke, Kranjc, Agata, Capelli, Riccardo, Rossetti, Giulia, Nechushtai, Rachel, Carloni, Paolo (2023) Metadynamics simulations of ligands binding to protein surfaces: a novel tool for rational drug design. Physical Chemistry Chemical Physics, 25 (20) 13819-13824 doi:10.1039/d3cp01388j
Plain TextZuo, Ke, Kranjc, Agata, Capelli, Riccardo, Rossetti, Giulia, Nechushtai, Rachel, Carloni, Paolo (2023) Metadynamics simulations of ligands binding to protein surfaces: a novel tool for rational drug design. Physical Chemistry Chemical Physics, 25 (20) 13819-13824 doi:10.1039/d3cp01388j
In(2023) Physical Chemistry Chemical Physics Vol. 25 (20) Royal Society of Chemistry (RSC)


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 19, 2025 12:55:46
Go to top of page