Naguib, Ibrahim A., Abdelaleem, Eglal A., Hassan, Eman S., Ali, Nouruddin W., Gamal, Mohammed (2020) Partial least squares and linear support vector regression chemometric models for analysis of Norfloxacin and Tinidazole with Tinidazole impurity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 239. 118513 doi:10.1016/j.saa.2020.118513
Reference Type | Journal (article/letter/editorial) | ||
---|---|---|---|
Title | Partial least squares and linear support vector regression chemometric models for analysis of Norfloxacin and Tinidazole with Tinidazole impurity | ||
Journal | Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | ||
Authors | Naguib, Ibrahim A. | Author | |
Abdelaleem, Eglal A. | Author | ||
Hassan, Eman S. | Author | ||
Ali, Nouruddin W. | Author | ||
Gamal, Mohammed | Author | ||
Year | 2020 (October) | Volume | 239 |
Publisher | Elsevier BV | ||
DOI | doi:10.1016/j.saa.2020.118513Search in ResearchGate | ||
Generate Citation Formats | |||
Mindat Ref. ID | 16402237 | Long-form Identifier | mindat:1:5:16402237:9 |
GUID | 0 | ||
Full Reference | Naguib, Ibrahim A., Abdelaleem, Eglal A., Hassan, Eman S., Ali, Nouruddin W., Gamal, Mohammed (2020) Partial least squares and linear support vector regression chemometric models for analysis of Norfloxacin and Tinidazole with Tinidazole impurity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 239. 118513 doi:10.1016/j.saa.2020.118513 | ||
Plain Text | Naguib, Ibrahim A., Abdelaleem, Eglal A., Hassan, Eman S., Ali, Nouruddin W., Gamal, Mohammed (2020) Partial least squares and linear support vector regression chemometric models for analysis of Norfloxacin and Tinidazole with Tinidazole impurity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 239. 118513 doi:10.1016/j.saa.2020.118513 | ||
In | (2020) Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Vol. 239. Elsevier BV |
See Also
These are possibly similar items as determined by title/reference text matching only.