Vote for your favorite mineral in #MinCup25! - Sanidine vs. Hematite
It's a pair of often-overlooked classics as potassium feldspar sanidine competes with iron ore hematite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Feng, Zhizhuo, Shen, Dejian, Huang, Quan, Zhang, Tingting (2023) Effect of fly ash on early-age properties and viscoelastic behaviors of supersulfated cement concrete under different degrees of restraint. Construction and Building Materials, 401. 132895 doi:10.1016/j.conbuildmat.2023.132895

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleEffect of fly ash on early-age properties and viscoelastic behaviors of supersulfated cement concrete under different degrees of restraint
JournalConstruction and Building Materials
AuthorsFeng, ZhizhuoAuthor
Shen, DejianAuthor
Huang, QuanAuthor
Zhang, TingtingAuthor
Year2023 (October)Volume401
PublisherElsevier BV
DOIdoi:10.1016/j.conbuildmat.2023.132895Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID16656182Long-form Identifiermindat:1:5:16656182:1
GUID0
Full ReferenceFeng, Zhizhuo, Shen, Dejian, Huang, Quan, Zhang, Tingting (2023) Effect of fly ash on early-age properties and viscoelastic behaviors of supersulfated cement concrete under different degrees of restraint. Construction and Building Materials, 401. 132895 doi:10.1016/j.conbuildmat.2023.132895
Plain TextFeng, Zhizhuo, Shen, Dejian, Huang, Quan, Zhang, Tingting (2023) Effect of fly ash on early-age properties and viscoelastic behaviors of supersulfated cement concrete under different degrees of restraint. Construction and Building Materials, 401. 132895 doi:10.1016/j.conbuildmat.2023.132895
In(2023) Construction and Building Materials Vol. 401. Elsevier BV


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 7, 2025 00:39:21
Go to top of page