Halabisky, Meghan, Miller, Dan, Stewart, Anthony J., Yahnke, Amy, Lorigan, Daniel, Brasel, Tate, Moskal, Ludmila Monika (2023) The Wetland Intrinsic Potential tool: mapping wetland intrinsic potential through machine learning of multi-scale remote sensing proxies of wetland indicators. Hydrology and Earth System Sciences, 27 (20) 3687-3699 doi:10.5194/hess-27-3687-2023
Reference Type | Journal (article/letter/editorial) | ||
---|---|---|---|
Title | The Wetland Intrinsic Potential tool: mapping wetland intrinsic potential through machine learning of multi-scale remote sensing proxies of wetland indicators | ||
Journal | Hydrology and Earth System Sciences | ||
Authors | Halabisky, Meghan | Author | |
Miller, Dan | Author | ||
Stewart, Anthony J. | Author | ||
Yahnke, Amy | Author | ||
Lorigan, Daniel | Author | ||
Brasel, Tate | Author | ||
Moskal, Ludmila Monika | Author | ||
Year | 2023 (October 20) | Volume | 27 |
Issue | 20 | ||
Publisher | Copernicus GmbH | ||
DOI | doi:10.5194/hess-27-3687-2023Search in ResearchGate | ||
Generate Citation Formats | |||
Mindat Ref. ID | 16909770 | Long-form Identifier | mindat:1:5:16909770:9 |
GUID | 0 | ||
Full Reference | Halabisky, Meghan, Miller, Dan, Stewart, Anthony J., Yahnke, Amy, Lorigan, Daniel, Brasel, Tate, Moskal, Ludmila Monika (2023) The Wetland Intrinsic Potential tool: mapping wetland intrinsic potential through machine learning of multi-scale remote sensing proxies of wetland indicators. Hydrology and Earth System Sciences, 27 (20) 3687-3699 doi:10.5194/hess-27-3687-2023 | ||
Plain Text | Halabisky, Meghan, Miller, Dan, Stewart, Anthony J., Yahnke, Amy, Lorigan, Daniel, Brasel, Tate, Moskal, Ludmila Monika (2023) The Wetland Intrinsic Potential tool: mapping wetland intrinsic potential through machine learning of multi-scale remote sensing proxies of wetland indicators. Hydrology and Earth System Sciences, 27 (20) 3687-3699 doi:10.5194/hess-27-3687-2023 | ||
In | (2023, October) Hydrology and Earth System Sciences Vol. 27 (20) Copernicus GmbH |
See Also
These are possibly similar items as determined by title/reference text matching only.