Reference Type | Journal (article/letter/editorial) |
---|
Title | Leveraging DFT and Molecular Fragmentation for Chemically Accurate pKa Prediction Using Machine Learning |
---|
Journal | Journal of Chemical Information and Modeling |
---|
Authors | Sanchez, Alec J. | Author |
---|
Maier, Sarah | Author |
Raghavachari, Krishnan | Author |
Year | 2024 (February 12) | Volume | 64 |
---|
Issue | 3 |
---|
Publisher | American Chemical Society (ACS) |
---|
DOI | doi:10.1021/acs.jcim.3c01923Search in ResearchGate |
---|
| Generate Citation Formats |
Mindat Ref. ID | 17156749 | Long-form Identifier | mindat:1:5:17156749:8 |
---|
|
GUID | 0 |
---|
Full Reference | Sanchez, Alec J., Maier, Sarah, Raghavachari, Krishnan (2024) Leveraging DFT and Molecular Fragmentation for Chemically Accurate pKa Prediction Using Machine Learning. Journal of Chemical Information and Modeling, 64 (3) 712-723 doi:10.1021/acs.jcim.3c01923 |
---|
Plain Text | Sanchez, Alec J., Maier, Sarah, Raghavachari, Krishnan (2024) Leveraging DFT and Molecular Fragmentation for Chemically Accurate pKa Prediction Using Machine Learning. Journal of Chemical Information and Modeling, 64 (3) 712-723 doi:10.1021/acs.jcim.3c01923 |
---|
In | (2024, February) Journal of Chemical Information and Modeling Vol. 64 (3) American Chemical Society (ACS) |
---|
These are possibly similar items as determined by title/reference text matching only.