Vote for your favorite mineral in #MinCup25! - Sanidine vs. Hematite
It's a pair of often-overlooked classics as potassium feldspar sanidine competes with iron ore hematite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Koyale, Pramod A., Mulik, Swapnajit V., Gunjakar, Jayavant L., Dongale, Tukaram D., Koli, Valmiki B., Mullani, Navaj B., Sutar, Santosh S., Kapdi, Yash G., Soni, Saurabh S., Delekar, Sagar D. (2024) Synergistic Enhancement of Water-Splitting Performance Using MOF-Derived Ceria-Modified g-C3N4 Nanocomposites: Synthesis, Performance Evaluation, and Stability Prediction with Machine Learning. Langmuir, 40 (26) 13657-13668 doi:10.1021/acs.langmuir.4c01336

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleSynergistic Enhancement of Water-Splitting Performance Using MOF-Derived Ceria-Modified g-C3N4 Nanocomposites: Synthesis, Performance Evaluation, and Stability Prediction with Machine Learning
JournalLangmuir
AuthorsKoyale, Pramod A.Author
Mulik, Swapnajit V.Author
Gunjakar, Jayavant L.Author
Dongale, Tukaram D.Author
Koli, Valmiki B.Author
Mullani, Navaj B.Author
Sutar, Santosh S.Author
Kapdi, Yash G.Author
Soni, Saurabh S.Author
Delekar, Sagar D.Author
Year2024 (July 2)Volume40
Page(s)13657-13668Issue26
PublisherAmerican Chemical Society (ACS)
DOIdoi:10.1021/acs.langmuir.4c01336Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID17509712Long-form Identifiermindat:1:5:17509712:0
GUID0
Full ReferenceKoyale, Pramod A., Mulik, Swapnajit V., Gunjakar, Jayavant L., Dongale, Tukaram D., Koli, Valmiki B., Mullani, Navaj B., Sutar, Santosh S., Kapdi, Yash G., Soni, Saurabh S., Delekar, Sagar D. (2024) Synergistic Enhancement of Water-Splitting Performance Using MOF-Derived Ceria-Modified g-C3N4 Nanocomposites: Synthesis, Performance Evaluation, and Stability Prediction with Machine Learning. Langmuir, 40 (26) 13657-13668 doi:10.1021/acs.langmuir.4c01336
Plain TextKoyale, Pramod A., Mulik, Swapnajit V., Gunjakar, Jayavant L., Dongale, Tukaram D., Koli, Valmiki B., Mullani, Navaj B., Sutar, Santosh S., Kapdi, Yash G., Soni, Saurabh S., Delekar, Sagar D. (2024) Synergistic Enhancement of Water-Splitting Performance Using MOF-Derived Ceria-Modified g-C3N4 Nanocomposites: Synthesis, Performance Evaluation, and Stability Prediction with Machine Learning. Langmuir, 40 (26) 13657-13668 doi:10.1021/acs.langmuir.4c01336
In(2024, July) Langmuir Vol. 40 (26) American Chemical Society (ACS)


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are Š OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 7, 2025 12:57:34
Go to top of page