Vote for your favorite mineral in #MinCup25! - Chrysotile vs. Pectolite
Two new minerals to launch this year's cup! Hazardous (but useful!) chrysotile faces off against stunning gem pectolite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Kumar, Priyadarshi Chinmoy, Saikia, Partha Pratim, Bedle, Heather, Sain, Kalachand (2025) Unsupervised machine learning models applied to basement faults: An example from the Dibrugarh region, NE India. Journal of Asian Earth Sciences, 280. doi:10.1016/j.jseaes.2024.106446

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleUnsupervised machine learning models applied to basement faults: An example from the Dibrugarh region, NE India
JournalJournal of Asian Earth Sciences
AuthorsKumar, Priyadarshi ChinmoyAuthor
Saikia, Partha PratimAuthor
Bedle, HeatherAuthor
Sain, KalachandAuthor
Year2025 (March)Volume280
PublisherElsevier BV
DOIdoi:10.1016/j.jseaes.2024.106446Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID17777717Long-form Identifiermindat:1:5:17777717:4
GUID0
Full ReferenceKumar, Priyadarshi Chinmoy, Saikia, Partha Pratim, Bedle, Heather, Sain, Kalachand (2025) Unsupervised machine learning models applied to basement faults: An example from the Dibrugarh region, NE India. Journal of Asian Earth Sciences, 280. doi:10.1016/j.jseaes.2024.106446
Plain TextKumar, Priyadarshi Chinmoy, Saikia, Partha Pratim, Bedle, Heather, Sain, Kalachand (2025) Unsupervised machine learning models applied to basement faults: An example from the Dibrugarh region, NE India. Journal of Asian Earth Sciences, 280. doi:10.1016/j.jseaes.2024.106446
In(2025) Journal of Asian Earth Sciences Vol. 280. Elsevier BV


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 1, 2025 18:54:26
Go to top of page