Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

González-Jiménez, José María; González-Pérez, Igor; Plissart, Gaëlle; Ferreira, Amira R.; Schettino, Erwin; Yesares, Lola; Schilling, Manuel E.; Corgne, Alexandre; Gervilla, Fernando (2025) Micron-to-nanoscale investigation of Cu-Fe-Ni sulfide inclusions within laurite (Ru, Os)S2 from chromitites. Mineralium Deposita, 60 (2). 581-604 doi:10.1007/s00126-024-01285-0

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleMicron-to-nanoscale investigation of Cu-Fe-Ni sulfide inclusions within laurite (Ru, Os)S2 from chromitites
JournalMineralium Deposita
AuthorsGonzález-Jiménez, José MaríaAuthor
González-Pérez, IgorAuthor
Plissart, GaëlleAuthor
Ferreira, Amira R.Author
Schettino, ErwinAuthor
Yesares, LolaAuthor
Schilling, Manuel E.Author
Corgne, AlexandreAuthor
Gervilla, FernandoAuthor
Year2025 (March)Volume60
Page(s)581-604Issue2
PublisherSpringer Science and Business Media LLC
DOIdoi:10.1007/s00126-024-01285-0Search in ResearchGate
Generate Citation Formats
Classification
Not set
LoC
Not set
Mindat Ref. ID18032206Long-form Identifiermindat:1:5:18032206:4
GUID0
Full ReferenceGonzález-Jiménez, José María; González-Pérez, Igor; Plissart, Gaëlle; Ferreira, Amira R.; Schettino, Erwin; Yesares, Lola; Schilling, Manuel E.; Corgne, Alexandre; Gervilla, Fernando (2025) Micron-to-nanoscale investigation of Cu-Fe-Ni sulfide inclusions within laurite (Ru, Os)S2 from chromitites. Mineralium Deposita, 60 (2). 581-604 doi:10.1007/s00126-024-01285-0
Plain TextGonzález-Jiménez, José María; González-Pérez, Igor; Plissart, Gaëlle; Ferreira, Amira R.; Schettino, Erwin; Yesares, Lola; Schilling, Manuel E.; Corgne, Alexandre; Gervilla, Fernando (2025) Micron-to-nanoscale investigation of Cu-Fe-Ni sulfide inclusions within laurite (Ru, Os)S2 from chromitites. Mineralium Deposita, 60 (2). 581-604 doi:10.1007/s00126-024-01285-0
In(2025, March) Mineralium Deposita Vol. 60 (2). Springer Science and Business Media LLC
Abstract/NotesThis paper provides a top-down nanoscale analysis of Cu-Ni-Fe sulfide inclusions in laurite from the Taitao ophiolite (Chile) and the Kevitsa mafic-ultramafic igneous intrusion (Finland). High-resolution transmission electron microscopy (HRTEM) reveal that Cu-Ni-Fe sulfide inclusions are euhedral to (sub)-anhedral (i.e., droplet-like) and form single, biphasic or polyphasic grains, made up of different polymorphs, polytypes and polysomes even within a single sulfide crystal. Tetragonal (I4− 2 d) and cubic (F− 4 3m) chalcopyrite (CuFeS2) host frequent fringes of bornite (Cu5FeS4; cubic F− 4 3m and/ or orthorhombic Pbca)±talnakhite (Cu9(Fe, Ni)8S16; cubic I− 4 3m)±pyrrhotite (Fe1−xS; monoclinic C2/c polytype 4C and orthorhombic Cmca polytype 11C)±pentlandite ((Ni, Fe)9S8; cubic Fm3m). Pentlandite hosts fringes of pyrrhotite, bornite and/or talnakhite. Laurite and Cu-Fe-Ni sulfide inclusions display coherent, semi-coherent and incoherent crystallographic orientation relationships (COR), defined by perfect edge-to-edge matching, as well as slight (2–4º) to significant (45º) lattice misfit. These COR suggest diverse mechanisms of crystal growth of Cu-Fe-Ni sulfide melt mechanically trapped by growing laurite. Meanwhile, the mutual COR within the sulfide inclusions discloses: (1) Fe-Ni-S melt solidified into MSS re-equilibrated after cooling into pyrrhotite±pentlandite, (2) Cu-Ni-Fe-S melts crystallized into the quaternary solid solution spanning the compositional range between heazlewoodite [(Ni, Fe)3±xS2] (Hzss) and ISS [(Cu1±x, Fe1±y)S2]. Additionally, nanocrystallites (50–100 nm) of Pt-S and iridarsenite (IrAsS) accompanying the sulfide inclusions spotlight the segregation of PGE-rich sulfide and arsenide melt earlier and/or contemporarily to laurite crystallization from the silicate magmas. Cobaltite (CoAsS)-gersdorffite (NiAsS) epitaxially overgrown on laurite further supports the segregation of arsenide melts at early stages of chromitite formation.

References Listed

These are the references the publisher has listed as being connected to the article. Please check the article itself for the full list of references which may differ. Not all references are currently linkable within the Digital Library.

Augé T (1985) Platinum-group-mineral inclusions in ophiolitic chromitite from the Vourinos Complex, Greece. Can Mineral 23:163–171
Augé T (1988) Platinum-group minerals in the Tiébaghi and Vourinos ophiolite complexes: genetic implications. Can Mineral 26:177–192
Awan IZ, Khan AQ (2017) Precipitation from solid solutions. J Chem Soc Pak 39:319–336
Bayliss P (1982) A further crystal structure refinement of cobaltite. Am Mineral 67:1048–1057
Bayliss P (1989) Crystal chemistry and crystallography of some minerals within the pyrite group. Am Mineral 74:1168–1176
Bayliss P, Stephenson NC (1967) The crystal structure of gersdorffite. Min Mag 363:8–42
Bayliss P, Stephenson NC (1968) The crystal structure of disordered gersdorffite. Am Mineral 53:290–293
Not Yet Imported: - journal-article : 10.1038/s41467-020-18157-6

If you would like this item imported into the Digital Library, please contact us quoting Journal ID
Cabri LJ (2002) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group minerals. Can Inst Min Metall Petrol Calgary, Alberta, Canada, p 852
Not Yet Imported: - journal-article : 10.1016/j.matchar.2014.05.015

If you would like this item imported into the Digital Library, please contact us quoting Journal ID
Craig JR, Kullerud G (1969) Phase relations in the Cu-Fe-Ni-S system and their application to magmatic ore deposits. Econ Geol 4:344–358
Craig JR, Scott SD (1974) Sulfide Phase Equilibria, Mineral. Soc. Am. Short Course Notes 1:1–110
Durazzo A, Taylor LA (1982) Exsolution in the mss pentlandite system: textural and genetic implications for Ni sulfides ores. Min Depos 17:313–332
Epler M (2004) Structures by precipitation from solid solutions. ASM Handbook. Metallography and Microstructures, vol 9. Vander Voort, pp 134–139. DOI: https://doi.org/10.1361/asmhba0003731.
Not Yet Imported: - journal-article : 10.1039/C9SM01142K

If you would like this item imported into the Digital Library, please contact us quoting Journal ID
Fleet M, Burns P (1990) Structure and twining of cobaltite. Can Mineral 28:719–723
Francis CA, Fleet ME, Misra K, Craig JR (1976) Orientation of exsolved pentlandite in natural and synthetic nickeliferous pyrrhotite. Am Mineral 61:913–920
Garuti G, Zaccarini F, Moloshag V, Alimov V (1999a) Platinum-group elements as indicators of sulphur fugacity in ophiolitic upper mantle: an example from chromitites of the Ray-Iz ultramafic complex, Polar Urals, Russia. Can Mineral 37:1099–1115
Gervilla F, Leblac M, Torres-Ruiz J, Fenoll Hach-Alí P (1996) Immiscibility between arsenide and sulfide melts: a mechanism for the concentration of noble metals. Can Mineral 34:485–502
Giese RF, Kerr PF (1965) The crystal structures of ordered and disordered cobaltite. Am Mineral 50:1002–1014
Gregory J, Journet N, White G, Lappalainen M (2011) Kevitsa nickel copper project, Finland. Technical report (NI 43–101) for the mineral resources and reserves of the Kevitsa project. First quantum minerals ltd
Grieco G, Diella V, Chaplygina NL, Savalieva GN (2006) Platinum group elements zoning and mineralogy of chromitite from the cumulate sequence of the Nurali massif (Southern Urals, Russia). Ore Geol Rev 30(1–3):257–276
Hall SR, Gabe EJ (1972) The crystal structure of talnakhite, Cu18Fe16S32 model. B Am Mineral 57:368–380
Harris (1974) Ruthenarsenite and iridarsenite, two new minerals from the Territory of Papua and New Guinea and associated irarsite, laurite and cubic iron-bearing platinum. Can Mineral 12(4):280–284
Kinnaird A, Kruge FJ, Nex PAM, Cawthorn RG (2002) Chromite formation – a key to understanding processes of platinum enrichment. Trans Inst Min Metal 11:B23–B35
Kosyakov VI, Sinyakova E (2005) Directional crystallization of Fe-Ni sulfide melts within the crystallization field of monosulfide solid solution. Geochem Int 43(4):415–428
Lutz HD, Müller B, Schmidt T, Stingl Th (1990) Structure refinement of pyrite-type ruthenium disulfide, RuS2, and ruthenium diselenide, RuSe2. Acta Crystallogr A C46:2003–2005
Not Yet Imported: - journal-article : 10.1016/j.actamat.2013.05.015

If you would like this item imported into the Digital Library, please contact us quoting Journal ID
McDonald I (2008) Platinum-group element and sulphide mineralogy in ultramafic complexes at western Andriamena, Madagascar. Trans Inst Min Metal: Sect B 117:1–10
Not Yet Imported: - book-chapter : 10.1093/acprof:oso/9780199669950.003.0002

If you would like this item imported into the Digital Library, please contact us quoting Journal ID
Mungall JE (2005) Magmatic geochemistry of the platinum-group elements. In: J.E. Mungall (Ed) Exploration for Platinum-group Elements Deposits. Short Course Ser Vol 35, Mineral Assoc Canada, pp. 1–34
Mutanen T, Huhma H (2001) U-Pb geochronology of the Koitelainen, Akanvaara and Keivitsa layered intrusions and related rocks. Geol Surv Finland Spec Pap 33:229–246
Nakazawa H, Morimoto N, Watanabe E (1975) Direct observation of metal vacancies by high-resolution electron microscopy. Part I: 4 C type pyrrhotite (Fe7S8). Am Mineral 60:359–366
Ollikainen M, Ollikainen M (2004) The Finnish coordinate reference systems. Finnish Geodetic Institute and the National Land Survey
Plissart G, Akizawa N, Schilling M, Corgne A, Lin K-Y, Maite A, Marin C, González E, Warren J (2023) First report of a massive chromite from the Taitao ophiolite (Chile): an enigmatic origin leading to PGM and Y-REE phosphate crystallization. XVI Congreso Geológico de Chile
Rajamani V, Prewitt CT (1973) Crystal chemistry of natural pentlandites. Can Mineral 12:178–187
Scott D, Nowacki W (1976) The crystal structure of alloclasite, CoAS, and the alloclasite-cobaltite transformation. Can Min 561–566
Smith J, Graziane R, Petts DC, Regis D (2023) Crystallographic controlled exsolution and metal partitioning in magmatic sulfide deposits. Chemistry 83:125954
Stingl T, Müller B, Lutz HD (1992) Crystal structure refinement of osmium(II) disulfide, OsS2. Z für Kristallographie – Crystalline Mater 202:161–162
Tredoux M, Lindsay NM, Davies G, Macdonald L (1995) The fractionation of platinum-group elements in magmatic system, with the suggestion a novel causal mechanism. South Afr J Geol 98:157–167
Veloso EE, Anma R, Yamaji A (2009) Ophiolite Emplacement and the Effects of the Subduction of the Active Chile Ridge System: Heterogeneous Paleostress Regimes Recorded in the Taitao Ophiolite (Southern Chile). Andean Geol 36:3–16
Not Yet Imported: - journal-article : 10.1080/01411590500185542

If you would like this item imported into the Digital Library, please contact us quoting Journal ID
Yund RA, Kullerud G (1960) The Cu-Fe-S system, phase relations at 700 ºC. Cornegie Inst Wash Year Book 59:111–114
Not Yet Imported: Journal of Materials Science & Technology - journal-article : 10.1016/S1005-0302(11)60094-7

If you would like this item imported into the Digital Library, please contact us quoting Journal ID

Map of Localities

Locality Pages

LocalityCitation Details
Taitao ophiolite, Aisén Province, Aisén, Chile

Mineral Occurrences

LocalityMineral(s)
Taitao ophiolite, Aisén Province, Aisén, Chile Basalt, Bornite, Chalcopyrite, Chromite, Chromitite, Clinopyroxenite, Dunite, Gabbro, Harzburgite, Iridarsenite, Laurite, Ophiolite, Pegmatitic gabbro, Pentlandite, Peridotite, Pillow lava, Pyrrhotite
Kevitsa Ni-Cu-PGE mine, Kevitsansarvi (Keivitsansarvi), Sodankylä, Lapland, Finland Biotite, Chromite, Chromitite, Cobaltite, Gabbro, Gersdorffite, Ilmenite, Irarsite, Iridarsenite, Komatiite, Laurite, Magnetite, Mudstone, Olivine pyroxenite, Pentlandite, Peridotite, Pyroxene Group, Pyroxenite, Pyrrhotite, Quartzite, Rhyolite, Sperrylite, Websterite


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 13, 2025 13:07:30
Go to top of page