Reference Type | Journal (article/letter/editorial) |
---|
Title | Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems |
---|
Journal | The Journal of Chemical Physics |
---|
Authors | Li, Jun | Author |
---|
Jiang, Bin | Author |
Guo, Hua | Author |
Year | 2013 (November 28) | Volume | 139 |
---|
Issue | 20 |
---|
Publisher | AIP Publishing |
---|
DOI | doi:10.1063/1.4832697Search in ResearchGate |
---|
| Generate Citation Formats |
Mindat Ref. ID | 2364336 | Long-form Identifier | mindat:1:5:2364336:7 |
---|
|
GUID | 0 |
---|
Full Reference | Li, Jun, Jiang, Bin, Guo, Hua (2013) Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems. The Journal of Chemical Physics, 139 (20). 204103pp. doi:10.1063/1.4832697 |
---|
Plain Text | Li, Jun, Jiang, Bin, Guo, Hua (2013) Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems. The Journal of Chemical Physics, 139 (20). 204103pp. doi:10.1063/1.4832697 |
---|
In | (2013, November) The Journal of Chemical Physics Vol. 139 (20) AIP Publishing |
---|
These are possibly similar items as determined by title/reference text matching only.