Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Pawley, A. R., Allan, D. R. (2001) A high-pressure structural study of lawsonite using angle-dispersive powder-diffraction methods with synchrotron radiation. Mineralogical Magazine, 65 (1) 41-58 doi:10.1180/002646101550118

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleA high-pressure structural study of lawsonite using angle-dispersive powder-diffraction methods with synchrotron radiation
JournalMineralogical Magazine
AuthorsPawley, A. R.Author
Allan, D. R.Author
Year2001 (February)Volume65
Issue1
PublisherMineralogical Society
DOIdoi:10.1180/002646101550118Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID243249Long-form Identifiermindat:1:5:243249:0
GUID0
Full ReferencePawley, A. R., Allan, D. R. (2001) A high-pressure structural study of lawsonite using angle-dispersive powder-diffraction methods with synchrotron radiation. Mineralogical Magazine, 65 (1) 41-58 doi:10.1180/002646101550118
Plain TextPawley, A. R., Allan, D. R. (2001) A high-pressure structural study of lawsonite using angle-dispersive powder-diffraction methods with synchrotron radiation. Mineralogical Magazine, 65 (1) 41-58 doi:10.1180/002646101550118
Abstract/NotesAbstractStructural refinements of lawsonite have been obtained at pressures up to 16.5 GPa using angle-dispersive powder diffraction with synchrotron radiation on a natural sample contained in a diamond anvil cell. Lawsonite compresses smoothly and relatively isotropically up to 10 GPa. Its bulk modulus is 126.1(6) GPa (for K’ = 4), consistent with previous results. A trend of decreasing Si–O–Si angle indicates that compression is accommodated partly through the narrowing of the cavities containing Ca and H2O in the [001]ortho direction. At 10–11 GPa there is a phase transition from Cmcm to P21/m symmetry. The occurrence of a mixed-phase region, spanning >1 GPa, indicates that the transition is first order in character. The phase transition occurs through a shearing of (010)ortho sheets containing AlO6 octahedral chains in the [100]ortho direction, which causes an increase in βmono. Across the transition, the number of oxygens coordinated to Ca increases from 8 to 9, causing an increase in the average Ca–O bond length. The compressibility of P21/m lawsonite could not be determined due to solidification of the methanol/ethanol pressure-transmitting medium. On the basis of an experiment in which the P21/m lawsonite structure was heated to 200°C at 12.0 GPa, we predict a shallow positive P-T slope for the phase transition, and therefore no stability field for P21/m lawsonite in the Earth.

Mineral Pages

MineralCitation Details
Lawsonite


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 19, 2025 06:54:25
Go to top of page