Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Roberts, A. C., Burns, P. C., Gault, R. A., Criddle, A. J., Feinglos, M. N. (2004) Petewilliamsite, (Ni,Co)30(As2O7)15, a new mineral from Johanngeorgenstadt, Saxony, Germany: description and crystal structure. Mineralogical Magazine, 68 (2) 231-240 doi:10.1180/0026461046820183

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitlePetewilliamsite, (Ni,Co)30(As2O7)15, a new mineral from Johanngeorgenstadt, Saxony, Germany: description and crystal structure
JournalMineralogical Magazine
AuthorsRoberts, A. C.Author
Burns, P. C.Author
Gault, R. A.Author
Criddle, A. J.Author
Feinglos, M. N.Author
Year2004 (April)Volume68
Issue2
PublisherMineralogical Society
Download URLhttps://rruff.info/rruff_1.0/uploads/MM68_231.pdf+
DOIdoi:10.1180/0026461046820183Search in ResearchGate
Generate Citation Formats
Classification
Not set
LoC
Not set
Mindat Ref. ID243532Long-form Identifiermindat:1:5:243532:3
GUID0
Full ReferenceRoberts, A. C., Burns, P. C., Gault, R. A., Criddle, A. J., Feinglos, M. N. (2004) Petewilliamsite, (Ni,Co)30(As2O7)15, a new mineral from Johanngeorgenstadt, Saxony, Germany: description and crystal structure. Mineralogical Magazine, 68 (2) 231-240 doi:10.1180/0026461046820183
Plain TextRoberts, A. C., Burns, P. C., Gault, R. A., Criddle, A. J., Feinglos, M. N. (2004) Petewilliamsite, (Ni,Co)30(As2O7)15, a new mineral from Johanngeorgenstadt, Saxony, Germany: description and crystal structure. Mineralogical Magazine, 68 (2) 231-240 doi:10.1180/0026461046820183
Abstract/NotesPetewilliamsite, ideally (Ni,Co)30(As2O7)15, monoclinic, space group C2, a = 33.256(5), b = 8.482(1), c = 14.191(2) Å, ß = 104.145(3)°, V = 3881.6(11) Å3, a:b:c = 3.9209:1:1.6731, Z = 2, is a new mineral found on a single nickeline-veined quartz specimen from Johanngeorgenstadt, Saxony, Germany. The mineral possesses a pronounced subcell-supercell: a (subcell) = 1/5 a (supercell); b (subcell) = b (supercell); c (subcell) = 1/3 c (supercell), and the strongest six lines of the X-ray powder-diffraction pattern are [d in Å (I) (hkl)]: 4.235(30)(020) ; 3.118(100)(513, 023); 3.005(60); 2.567(50); 1.637(50)(536 ); 1.507(30b)(553, ). It occurs predominantly as scattered patches of mm-sized aggregates which are intimately associated with varicoloured xanthiosite; additional associations include bunsenite, aerugite, rooseveltite, native bismuth, paganoite and two undefined arsenates. Subhedral equant crystals with rounded faces are intimately intergrown in 1 mm-sized aggregates and individual grains do not exceed 0.5 mm in maximum diameter. The average crystal size is variable from 20 μm to 0.3 mm. The colour varies from dark violet-red to dark brownish-red and the streak is pale reddish-brown to pale purplish-brown. Crystals are translucent, brittle, vitreous, and do not fluoresce under ultraviolet light. The mineral shows neither twinning nor cleavage, has an uneven fracture, and the calculated density (for the empirical formula) is 4.904 g/cm3. Electron-microprobe analyses gave NiO 19.45, CoO 18.39, CuO 3.40, CaO 0.17, FeO 0.04, As2O5 60.32, total 101.77 wt.%. The empirical formula, derived from crystal-structure analysis and electron-microprobe analyses, is (Ni14.662+Co13.822+Cu2.412+Ca0.17Fe0.032+)Σ31.09(As1.975+O7)15, based on O = 105 atoms per formula unit (a.p.f.u.). In reflected plane-polarized light in air, petewilliamsite is dark grey with orange to spectral (multicoloured) internal reflections and no obvious bireflectance, anisotropy or pleochroism. Measured reflectance values in air are tabulated; the index of refraction calculated at 589 nm is 1.88. The mineral name honours Professor Peter (‘Pete’) Allan Williams of the University of Western Sydney, New South Wales, Australia, for his contributions to the study of secondary minerals.The crystal structure of petewilliamsite has been solved by direct methods and refined on the basis of F2 using 9212 unique reflections measured with Mo-Kα X-radiation on a diffractometer equipped with a CCDbased detector. The final R1 was 7.68%, calculated for 1273 observed reflections. The structure contains 15 symmetrically distinct As5+ cations, each of which is tetrahedrally coordinated by four O atoms, and pairs of these AsO4 tetrahedra share a vertex which results in As2O7 pyroarsenate groups that are in layers parallel to (010). The structure also has 16 distinct transition-metal M (M: Ni,Co) sites of which there are one tetrahedral, four square bipyramidal, and 11 octahedral arrangements. Adjacent pyroarsenate groups are linked through bonds to M cations. The structure of petewilliamsite is not closely related to other naturally occurring arsenates and it is the first pyroarsenate mineral.

Mineral Pages

MineralCitation Details
Petewilliamsite

Mineral Occurrences

LocalityMineral(s)
Johanngeorgenstadt, Erzgebirgskreis, Saxony, Germanyⓘ Petewilliamsite


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 15, 2025 16:54:35
Go to top of page