Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Pieczka, A., Evans, R. J., Grew, E. S., Groat, L. A., Ma, C., Rossman, G. R. (2013) The dumortierite supergroup. I. A new nomenclature for the dumortierite and holtite groups. Mineralogical Magazine, 77 (6) 2825-2839 doi:10.1180/minmag.2013.077.6.09

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleThe dumortierite supergroup. I. A new nomenclature for the dumortierite and holtite groups
JournalMineralogical Magazine
AuthorsPieczka, A.Author
Evans, R. J.Author
Grew, E. S.Author
Groat, L. A.Author
Ma, C.Author
Rossman, G. R.Author
Year2013 (August)Volume77
Issue6
PublisherMineralogical Society
DOIdoi:10.1180/minmag.2013.077.6.09Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID244443Long-form Identifiermindat:1:5:244443:1
GUID0
Full ReferencePieczka, A., Evans, R. J., Grew, E. S., Groat, L. A., Ma, C., Rossman, G. R. (2013) The dumortierite supergroup. I. A new nomenclature for the dumortierite and holtite groups. Mineralogical Magazine, 77 (6) 2825-2839 doi:10.1180/minmag.2013.077.6.09
Plain TextPieczka, A., Evans, R. J., Grew, E. S., Groat, L. A., Ma, C., Rossman, G. R. (2013) The dumortierite supergroup. I. A new nomenclature for the dumortierite and holtite groups. Mineralogical Magazine, 77 (6) 2825-2839 doi:10.1180/minmag.2013.077.6.09
Abstract/NotesAbstractAlthough the distinction between magnesiodumortieite and dumortierite, i.e. Mg vs. Al dominance at the partially vacant octahedral Al1 site, had met current criteria of the IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) for distinguishing mineral species, the distinction between holtite and dumortierite had not, since Al and Si are dominant over Ta and (Sb, As) at the Al1 and two Si sites, respectively, in both minerals. Recent studies have revealed extensive solid solution between Al, Ti, Ta and Nb at Al1 and between Si, As and Sb at the two Si sites or nearly coincident (As, Sb) sites in dumortierite and holtite, further blurring the distinction between the two minerals.This situation necessitated revision in the nomenclature of the dumortierite group. The newly constituted dumortierite supergroup, space group Pnma (no. 62), comprises two groups and six minerals, one of which is the first member of a potential third group, all isostructural with dumortierite. The supergroup, which has been approved by the CNMNC, is based on more specific end-member compositions for dumortierite and holtite, in which occupancy of the Al1 site is critical.(1) Dumortierite group, with Al1 = Al3+, Mg2+ and ☐, where ☐ denotes cation vacancy. Charge balance is provided by OH substitution for O at the O2, O7 and O10 sites. In addition to dumortierite, endmember composition AlAl6BSi3O18, and magnesiodumortierite, endmember composition MgAl6BSi3O17(OH), plus three endmembers, “hydroxydumortierite”, ☐Al6BSi3O15(OH)3 and two Mg-Ti analogues of dumortierite, (Mg0.5Ti0.5)Al6BSi3O18 and (Mg0.5Ti0.5)Mg2Al4BSi3O16(OH)2, none of which correspond to mineral species. Three more hypothetical endmembers are derived by homovalent substitutions of Fe3+ for Al and Fe2+ for Mg.(2) Holtite group, with Al1 = Ta5+, Nb5+, Ti4+ and ☐. In contrast to the dumortierite group, vacancies serve not only to balance the extra charge introduced by the incorporation of pentavalent and quadrivalent cations for trivalent cations at Al1, but also to reduce repulsion between the highly charged cations. This group includes holtite, endmember composition (Ta0.6☐0.4)Al6BSi3O18, nioboholite (2012-68), endmember composition (Nb0.6☐0.4)Al6BSi3O18, and titanoholtite (2012-69), endmember composition (Ti0.75☐0.25)Al6BSi3O18.(3) Szklaryite (2012-70) with Al1 = ☐ and an endmember formula ☐Al6BAs3+3O15. Vacancies at Al1 are caused by loss of O at O2 and O7, which coordinate the Al1 with the Si sites, due to replacement of Si4+ by As3+ and Sb3+, and thus this mineral does not belong in either the dumortierite or the holtite group. Although szklaryite is distinguished by the mechanism introducing vacancies at the Al1 site, the primary criterion for identifying it is based on occupancy of the Si/As, Sb sites: (As3+ + Sb3+) > Si4+ consistent with the dominant-valency rule. A Sb3+ analogue to szklaryite is possible.

Mineral Pages

MineralCitation Details
Dumortierite


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 14, 2025 15:27:19
Go to top of page