Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Kampf, A. R., Adams, P. M., Mills, S. J., Nash, B. P. (2016) Crimsonite, PbFe3+2(PO4)2(OH)2, the phosphate analogue of carminite from the Silver Coin mine, Valmy, Nevada, USA. Mineralogical Magazine, 80 (6) 925-935 doi:10.1180/minmag.2016.080.031

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleCrimsonite, PbFe3+2(PO4)2(OH)2, the phosphate analogue of carminite from the Silver Coin mine, Valmy, Nevada, USA
JournalMineralogical Magazine
AuthorsKampf, A. R.Author
Adams, P. M.Author
Mills, S. J.Author
Nash, B. P.Author
Year2016 (October)Volume80
Issue6
PublisherMineralogical Society
Download URLhttps://rruff.info/rruff_1.0/uploads/MM80_925.pdf+
DOIdoi:10.1180/minmag.2016.080.031Search in ResearchGate
Generate Citation Formats
Classification
Not set
LoC
Not set
Mindat Ref. ID244818Long-form Identifiermindat:1:5:244818:7
GUID0
Full ReferenceKampf, A. R., Adams, P. M., Mills, S. J., Nash, B. P. (2016) Crimsonite, PbFe3+2(PO4)2(OH)2, the phosphate analogue of carminite from the Silver Coin mine, Valmy, Nevada, USA. Mineralogical Magazine, 80 (6) 925-935 doi:10.1180/minmag.2016.080.031
Plain TextKampf, A. R., Adams, P. M., Mills, S. J., Nash, B. P. (2016) Crimsonite, PbFe3+2(PO4)2(OH)2, the phosphate analogue of carminite from the Silver Coin mine, Valmy, Nevada, USA. Mineralogical Magazine, 80 (6) 925-935 doi:10.1180/minmag.2016.080.031
Abstract/NotesCrimsonite (IMA2014-095), PbFe3+2(PO 4)2(OH)2, the phosphate analogue of carminite, is a new mineral from the Silver Coin mine, Valmy, Iron Point district, Humboldt County, Nevada, USA, where it occurs as a low-temperature secondary mineral in association with fluorwavellite, goethite, hematite, hentschelite, plumbogummite and variscite on quartz. Crimsonite occurs in subparallel aggregates of deep red blades or plates flattened on {100} and up to 0.1 mm in maximum dimension. The streak is light purplish orange. Crystals are transparent and have adamantine lustre. The Mohs hardness is ∼3½, the tenacity is brittle, the fracture is irregular to splintery and an imperfect cleavage is likely on {101}. The calculated density is 5.180 g/cm3. Crimsonite is optically biaxial (+), with 2V = 85.5(5)° and γ – α = 0.011. Using the Gladstone-Dale relationship, the calculated indices of refraction are α = 2.021, β = 2.026 and γ = 2.032. The optical orientation is X = b; Y = a; Z = c and the pleochroism is X light orange, Y light yellow, Z red brown; Y < X < Z. Electron microprobe analyses provided PbO 40.69, CaO 0.60, ZnO 0.72, CuO 0.13, Fe2O3 23.36, Al2O3 0.34, V2O5 0.70, As2O5 12.05, P2O5 16.03, SO3 0.33 and H2O 3.64 (structure), total 98.59 wt.%. The empirical formula (based on 10 O apfu) is (Pb1.06Ca0.06)∑1.12(Fe1.71Zn0.05Al0.04Cu0.01)∑1.81(P1.32As0.61V0.05S0.02)∑2.00O8[(OH)1.64(H2O)0.36]∑2.00. Crimsonite is orthorhombic, Cccm, a = 16.2535(13), b = 7.4724(4), c = 12.1533(9) Å, V = 1476.04(17) Å3 and Z = 8. The eight strongest lines in the powder X-ray diffraction pattern are [dobs in Å(I)(hkl)]: 5.86(42)(111); 4.53(45)(112); 3.485(64)(113); 3.190(100) (022); 3.026(40)(004); 2.902(54)(511); 2.502(77)(422) and 2.268(54)(224). The structure of crimsonite (R1 = 3.57% for 740 Fo > 4σF) contains FeO6 octahedra that share edges to form dimers, which are then linked to other dimers by corner sharing to form chains along [010]. These chains are linked by PO4 tetrahedra yielding sheets parallel to {001}. The sheets are linked to one another via bonds to 8-coordinated Pb2+ atoms with non-stereoactive 6s2 lone-electron pairs.

Map of Localities

Locality Pages

LocalityCitation Details
Silver Coin Mine, Valmy, Iron Point Mining District, Humboldt County, Nevada, USA

Mineral Pages

MineralCitation Details
Crimsonite

Mineral Occurrences

LocalityMineral(s)
Silver Coin Mine, Valmy, Iron Point Mining District, Humboldt County, Nevada, USA Crimsonite


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 21, 2025 11:48:33
Go to top of page