Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Moore, Alan C. (1984) Orbicular rhythmic layering in the palabora carbonatite, South Africa. Geological Magazine, 121 (1) 53-60 doi:10.1017/s0016756800027941

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleOrbicular rhythmic layering in the palabora carbonatite, South Africa
JournalGeological Magazine
AuthorsMoore, Alan C.Author
Year1984 (January)Volume121
Issue1
PublisherCambridge University Press (CUP)
DOIdoi:10.1017/s0016756800027941Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID252307Long-form Identifiermindat:1:5:252307:5
GUID0
Full ReferenceMoore, Alan C. (1984) Orbicular rhythmic layering in the palabora carbonatite, South Africa. Geological Magazine, 121 (1) 53-60 doi:10.1017/s0016756800027941
Plain TextMoore, Alan C. (1984) Orbicular rhythmic layering in the palabora carbonatite, South Africa. Geological Magazine, 121 (1) 53-60 doi:10.1017/s0016756800027941
In(1984, January) Geological Magazine Vol. 121 (1) Cambridge University Press (CUP)
Abstract/NotesAbstractThe earliest stage of magmatic activity within the Palabora carbonatite was marked by the intrusion of phosphate-bearing pyroxenite. In good exposures in the north, large-scale (2m diameter) orbicular structures are found. These consist of regularly-spaced alternating dark layers (phlogopite-rich) and light layers (diopside-plus apatite-rich) which, in hand specimen, are very similar to the ‘inch-scale’ planar layering which has been described in layered mafic instrusions. One of the purposes of this paper is to describe these unique features which are currently being destroyed by mining, as they form economic phosphate concentrations.The resemblance of the Palabora orbicules to Liesegang rings has led to the development of a qualitative model whereby the orbicules are regarded as having been formed by concentric periodic precipitation around central cores within dynamically quiet, isolated pockets of largely liquid magma. The controlling parameters are interpreted as being the rates of growth of the constituent minerals and the rates of diffusion of the elements crucial to their growth, i.e. K+, Al3+ and (OH)- for dark layers, and Ca2+ and P5+ for light layers.The presence of these spectacular structures with their delicate layering indicates that at the time of crystallization of the pyroxenites relatively non-turbulent conditions prevailed, and diopside, phlogopite and apatite crystallized essentially coevally. Hence, the vertical large-scale banding in the pyroxenite may also be a function of diffusion controlled processes rather than being caused by separate magma pulses.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 22, 2025 06:24:09
Go to top of page