Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Harris, P. T., Jones, M. R. (1988) Bedform movement in a marine tidal delta: air photo interpretations. Geological Magazine, 125 (1) 31-49 doi:10.1017/s0016756800009353

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleBedform movement in a marine tidal delta: air photo interpretations
JournalGeological Magazine
AuthorsHarris, P. T.Author
Jones, M. R.Author
Year1988 (January)Volume125
Issue1
PublisherCambridge University Press (CUP)
DOIdoi:10.1017/s0016756800009353Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID253758Long-form Identifiermindat:1:5:253758:4
GUID0
Full ReferenceHarris, P. T., Jones, M. R. (1988) Bedform movement in a marine tidal delta: air photo interpretations. Geological Magazine, 125 (1) 31-49 doi:10.1017/s0016756800009353
Plain TextHarris, P. T., Jones, M. R. (1988) Bedform movement in a marine tidal delta: air photo interpretations. Geological Magazine, 125 (1) 31-49 doi:10.1017/s0016756800009353
In(1988, January) Geological Magazine Vol. 125 (1) Cambridge University Press (CUP)
Abstract/NotesAbstractMorphological changes in bedforms composing a tidal delta at the northern entrance to Moreton Bay, Queensland have been studied by examining aerial photographs spanning a 26-year time period. The aerial photographs show the movements of 51 different sand-bank crestlines, and the morphological characteristics of both sand banks and sandwaves. From the orientation of sandwave crests to the sand-bank crestlines, zones of ebb- and flood-dominance in sand-transport direction are distinguished. The migration directions of the sand banks are predicted by considering the cross-sectional asymmetry of the sand banks together with their adjacent ebb/flood zones of net sand transport. The reliability of the predictions is tested by comparisons with sequential air photo data. When applied to 53 bedforms, the predictions achieved a high success rate, with 45 predicted migration directions matching those observed on the sequential aerial photographs. Bedform movement can be predicted, therefore, for any water depths in which submarine bedforms can be clearly seen on aerial photographs (< 10 m).Based upon their mobility, sand banks are classified into three categories: dynamic sand banks, which change quickly (within 2 years) and which have migration rates that are non-uniform along the bank crestline; progressive sand banks, which change slowly (from 2–10 years) and have migration rates that are uniform along their crestlines; and immobile sand banks, which change only over time intervals which exceed 10 years. Changes in sand-bank morphology occur by migration of the crestline together with growth and decay, and are considered to be linked with changes of larger ebb- and flood-dominant zones of net sand transport. The three different sand-bank types are characterized by distinctive heights, crestline lengths and wavelengths. They occur in different locations within Moreton Bay, possibly related to distance from external sand supplies and to relative tidal current and surface wave energy levels.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 15, 2025 01:37:30
Go to top of page