Vote for your favorite mineral in #MinCup25! - Sanidine vs. Hematite
It's a pair of often-overlooked classics as potassium feldspar sanidine competes with iron ore hematite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

YANG, DONG-SHENG, LI, XIAN-HUA, LI, WU-XIAN, LIANG, XIN-QUAN, LONG, WEN-GUO, XIONG, XIAO-LIN (2010) U–Pb and 40Ar–39Ar geochronology of the Baiyunshan gneiss (central Guangdong, south China): constraints on the timing of early Palaeozoic and Mesozoic tectonothermal events in the Wuyun (Wuyi-Yunkai) Orogen. Geological Magazine, 147 (4) 481-496 doi:10.1017/s0016756809990811

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleU–Pb and 40Ar–39Ar geochronology of the Baiyunshan gneiss (central Guangdong, south China): constraints on the timing of early Palaeozoic and Mesozoic tectonothermal events in the Wuyun (Wuyi-Yunkai) Orogen
JournalGeological Magazine
AuthorsYANG, DONG-SHENGAuthor
LI, XIAN-HUAAuthor
LI, WU-XIANAuthor
LIANG, XIN-QUANAuthor
LONG, WEN-GUOAuthor
XIONG, XIAO-LINAuthor
Year2010 (July)Volume147
Issue4
PublisherCambridge University Press (CUP)
DOIdoi:10.1017/s0016756809990811Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID260438Long-form Identifiermindat:1:5:260438:5
GUID0
Full ReferenceYANG, DONG-SHENG, LI, XIAN-HUA, LI, WU-XIAN, LIANG, XIN-QUAN, LONG, WEN-GUO, XIONG, XIAO-LIN (2010) U–Pb and 40Ar–39Ar geochronology of the Baiyunshan gneiss (central Guangdong, south China): constraints on the timing of early Palaeozoic and Mesozoic tectonothermal events in the Wuyun (Wuyi-Yunkai) Orogen. Geological Magazine, 147 (4) 481-496 doi:10.1017/s0016756809990811
Plain TextYANG, DONG-SHENG, LI, XIAN-HUA, LI, WU-XIAN, LIANG, XIN-QUAN, LONG, WEN-GUO, XIONG, XIAO-LIN (2010) U–Pb and 40Ar–39Ar geochronology of the Baiyunshan gneiss (central Guangdong, south China): constraints on the timing of early Palaeozoic and Mesozoic tectonothermal events in the Wuyun (Wuyi-Yunkai) Orogen. Geological Magazine, 147 (4) 481-496 doi:10.1017/s0016756809990811
In(2010, July) Geological Magazine Vol. 147 (4) Cambridge University Press (CUP)
Abstract/NotesAbstractComposite Sensitive High Resolution Ion Microprobe (SHRIMP) U–Pb zircon and 40Ar–39Ar step-heating biotite-hornblende ages are used to provide constraints on the timing and origin of the felsic gneissic rocks in the Baiyunshan Mountains region and to elucidate their tectonothermal history. SHRIMP dating and CL imaging of zircons give magmatic zircon crystallization ages between Late Ordovician and Early Silurian (c. 453.5 Ma, 446 Ma, and 439 Ma) for three representative felsic gneisses, suggesting that most of the Baiyunshan gneiss cannot represent basement rocks of the Cathaysia Block as previously thought. Including the present age information, a synthesis of available age data for regional Wuyun (Wuyi-Yunkai) events reflects the emergence of orogen-wide magmatism that could be syn-orogenic and have occurred mainly between 460 and 420 Ma in the South China Block. Inherited zircons are abundant, with ages clustering at late Mesoproterozoic (1189–1017 Ma) and middle Mesoproterozoic (772 Ma), which reveals that the Baiyunshan orthogneiss samples a crustal basement containing significant igneous or recycled components related to the Rodinia amalgamation and break-up. A SHRIMP date of 212 ± 12 Ma from a white rim of zircon provides evidence for metamorphic overprinting of an Indosinian tectonothermal event on the Baiyunshan gneiss. Incremental heating experiments with six biotite samples and one hornblende sample from a variety of metamorphic rocks yielded two distinct 40Ar–39Ar age groups: 150–155 and 94–98 Ma. The older ages are similar to zircon U–Pb dates for widespread granitic intrusions in central Guangdong. We attribute them to Late Jurassic magmatism-induced thermal resetting of the biotite K–Ar system. On the other hand, the younger age group is interpreted to record either cooling through the biotite closure temperature of ~300–350 °C or a second resetting of biotite Ar isotopes at c. 94–98 Ma due to contemporaneous magmatic activity. Our present age data suggest that the Maofengshan orthogneiss was exhumed to 8 to 10 km crustal levels at c. 150 Ma, whereas the eastward components of gneissic rock masses appear to have passed upward through the same crustal depth synchronously or later (by c. 94 Ma). Exhumation of middle crustal-level rocks in the study area since c. 155 Ma is roughly coeval with exhumation of gneissic rocks from elsewhere in the Wuyun Orogen, suggesting a large-scale mechanism for the exhumation pulse related to the Yanshanian extensional tectonic regime.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 7, 2025 04:09:55
Go to top of page