Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Axon, H. J., Nasir, M. J. (1977) A metallographic and microprobe examination of a metallic nodule from the Bondoc Peninsula meteorite. Mineralogical Magazine, 41 (317) 121-122 doi:10.1180/minmag.1977.041.317.17

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleA metallographic and microprobe examination of a metallic nodule from the Bondoc Peninsula meteorite
JournalMineralogical MagazineISSN0026-461X
AuthorsAxon, H. J.Author
Nasir, M. J.Author
Year1977 (March)Volume41
Issue317
PublisherMineralogical Society
Download URLhttps://rruff.info/doclib/MinMag/Volume_41/41-317-121.pdf+
DOIdoi:10.1180/minmag.1977.041.317.17Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID2735Long-form Identifiermindat:1:5:2735:3
GUID0
Full ReferenceAxon, H. J., Nasir, M. J. (1977) A metallographic and microprobe examination of a metallic nodule from the Bondoc Peninsula meteorite. Mineralogical Magazine, 41 (317) 121-122 doi:10.1180/minmag.1977.041.317.17
Plain TextAxon, H. J., Nasir, M. J. (1977) A metallographic and microprobe examination of a metallic nodule from the Bondoc Peninsula meteorite. Mineralogical Magazine, 41 (317) 121-122 doi:10.1180/minmag.1977.041.317.17
In(1977, March) Mineralogical Magazine Vol. 41 (317) Mineralogical Society
Abstract/NotesThe Bondoc Peninsula meteorite appears to be unstable and is disintegrating as the result of terrestrial corrosion. The meteorite is complex with occasional 1 to 3 cm dia. ‘Nodules’ of ‘iron-class’ material, fig. 1, within which are numerous non-metallic inclusions. These range in size from 0·5–1·5 mm and vary in shape from the extremes of angular to globular, shown in figs. 2 and 3. The metallic groundmass of fig. 1 is a polycrystalline array of kamacite grains that are equant in shape and about 3 to 4 mm dia. The boundaries between these kamacite grains are heavily invaded by corrosion product. The films of cracked schreibersite and strips of compositionally zoned taenite that are present at the kamacite boundaries each contribute about 2 % by volume and their average Ni contents are about 45 wt% and 40 wt% respectively. When these figures are combined with the average 6·2 wt% Ni, 0·75 wt% Co, and 0·02 wt% P of the kamacite the resulting bulk composition of the metal is ∼ 7·5 wt% Ni, ∼ 0·7 wt% Co, ∼ 0·3 wt% P. Nital etching reveals partially annealed Neumann bands in the kamacite, indicating a late stage reheating below about 500°C. However, the M profile method of Wood (1967) when applied to the zoned taenite yields a cooling rate of 0·1–0·5°C/Myr before this reheating event.The angular inclusions are relatively coarsely crystalline and commonly have massive chromite and tridymite crystals, with pyroxene, anorthite, and whitlockite usually present. Most angular inclusions also contain small particles of metal (10–40 µm dia.) interstitial to the mineral phases in the depth of the inclusion. Small quantities of sulphide and phosphide are similarly located. The metal in the angular inclusions is not detectably zoned and both kamacite and taenite show a range of Ni contents that vary with particle size in the manner previously observed by Powell (1969) for a range of conventional mesosiderites. We have in addition measured the Co and P contents of this metal and find P < 0·1 wt% and the Ni and Co analyses are consistent with equilibration in the ternary Fe-Ni-Co equilibrium diagram at ∼ 450 °C.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 16, 2025 18:12:06
Go to top of page