Vote for your favorite mineral in #MinCup25! - Zunyite vs. Molybdenite
It's the visually-unmistakable #zunyite vs the physically funky #molybdenite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Welch, M. D., Criddle, A. J., Symes, R. F. (1998) Mereheadite, Pb2O(OH)Cl: a new litharge-related oxychloride from Merehead Quarry, Cranmore, Somerset. Mineralogical Magazine, 62 (3) 387-393 doi:10.1180/002646198547657

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleMereheadite, Pb2O(OH)Cl: a new litharge-related oxychloride from Merehead Quarry, Cranmore, Somerset
JournalMineralogical MagazineISSN0026-461X
AuthorsWelch, M. D.Author
Criddle, A. J.Author
Symes, R. F.Author
Year1998 (June)Volume62
Issue3
PublisherMineralogical Society
Download URLhttps://rruff.info/doclib/MinMag/Volume_62/62-3-387.pdf+
DOIdoi:10.1180/002646198547657Search in ResearchGate
Generate Citation Formats
Classification
Not set
LoC
Not set
Mindat Ref. ID284Long-form Identifiermindat:1:5:284:4
GUID0
Full ReferenceWelch, M. D., Criddle, A. J., Symes, R. F. (1998) Mereheadite, Pb2O(OH)Cl: a new litharge-related oxychloride from Merehead Quarry, Cranmore, Somerset. Mineralogical Magazine, 62 (3) 387-393 doi:10.1180/002646198547657
Plain TextWelch, M. D., Criddle, A. J., Symes, R. F. (1998) Mereheadite, Pb2O(OH)Cl: a new litharge-related oxychloride from Merehead Quarry, Cranmore, Somerset. Mineralogical Magazine, 62 (3) 387-393 doi:10.1180/002646198547657
Abstract/NotesMereheadite, ideally Pb2O(OH)Cl, is a new mineral related to litharge and which is structurally similar to synthetic bismuth-oxyhalides. With other lead- and lead-copper oxychlorides, it occupies lenses and cavities in veins of manganese and iron oxide minerals which cut through a sequence of dolomitic limestones at Merehead quarry, Cranmore, Somerset (51°12′N, 2°26′W) Mereheadite is pale yellow to reddish-orange, transparent to translucent and has a white streak and a vitreous or resinous lustre. It is not fluorescent. Individual grains, up to a few mm across, cluster together in compact masses of 10–30 mm in size, but discrete crystals have not been observed. Specular reflectance data on randomly orientated grains from 400 to 700 nm are provided, and refractive indices calculated from these at 590 nm range from 2.19 to 2.28. H = 3.5, VHN100 = 171, D(meas) = 7.12(10) g/cm3, Dcalc = 7.31 g/cm3. The mineral is brittle with an uneven, conchoidal to hackly fracture and has a perfect (001) cleavage which is parallel to the sheets of PbO and Cl. It is intimately associated with mendipite, blixite, cerussite, hydrocerussite and calcite in lenses and pods in the veins. Other minerals which occupy cavities in these veins include chloroxiphite, paralaurionite, parkinsonite and the borosilicate datolite. Mereheadite is monoclinic, space group C2/c, and its cell parameters, refined from powder X-ray diffraction are: a = 5.680(2), b = 5.565(3), c = 13.143(9) Å, β=90.64(4)°, V = 415.4 (8) Å3, Z = 4. The ten strongest reflections in the X-ray powder diffraction pattern are [d in Å, (I, hkl)]: 2.930(10,113), 3.785(5,111, –111), 2.825(4,200), 6.581(4,002), 2.182(4,115), 2.780(4,020), 3.267(4,004), 1.980(3,–220), 1.695(3,224,132,117), 1.716(3,026). Its empirical formula is Pb8O4.19(BO3)0.51 (CO3)0.62(OH)0.76Cl4.09. Although it is very similar chemically to blixite, it has notably different cell parameters. There is some uncertainty about the essential nature of boron and carbon in natural mereheadite. This stems from the impossibility of ensuring the purity of samples for wet-chemical analysis, and from the predominance of lead in the structure of the mineral which has meant that the location of boron and carbon within the mereheadite structure is unresolved, 11B MAS NMR does show, however, that boron is present as BO3 groups. The structure consists of alternating PbO sheets and layers of chlorine atoms. Each lead atom is coordinated to four chlorines and four O/OH in a square antiprism configuration. As such, it is structurally-related to nadorite, thorikosite and schwartzembergite. Comparisons with structurally analogous phases such as bismuth oxychlorides and bismutite (Bi2O2CO3) suggest that the BO3 and CO3 groups are likely to replace chlorine in the layer between PbO sheets. The composition of natural mereheadite is defined by three end-members: the mereheadite end-member Pb2O(OH)Cl, and two fictive end-members Pb2(OH)2CO3 and Pb4O(OH)3BO3.

Map of Localities

Locality Pages

LocalityCitation Details
Torr Works Quarry, Cranmore, Mendip, Somerset, England, UK

Mineral Pages

MineralCitation Details
Mereheadite

Mineral Occurrences

LocalityMineral(s)
Torr Works Quarry, Cranmore, Mendip, Somerset, England, UK Mereheadite


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 12, 2025 20:50:47
Go to top of page