Vote for your favorite mineral in #MinCup25! - Stibnite vs. Okenite
It's a battle of dark and light as soft, dramatic stibnite goes up against adorable cottonballs of Okenite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Ernst, W. G. (1979) Coexisting sodic and calcic amphiboles from high-pressure metamorphic belts and the stability of barroisitic amphibole. Mineralogical Magazine, 43 (326) 269-278 doi:10.1180/minmag.1979.043.326.09

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleCoexisting sodic and calcic amphiboles from high-pressure metamorphic belts and the stability of barroisitic amphibole
JournalMineralogical MagazineISSN0026-461X
AuthorsErnst, W. G.Author
Year1979 (June)Volume43
Issue326
PublisherMineralogical Society
Download URLhttps://rruff.info/doclib/MinMag/Volume_43/43-326-269.pdf+
DOIdoi:10.1180/minmag.1979.043.326.09Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID3020Long-form Identifiermindat:1:5:3020:9
GUID0
Full ReferenceErnst, W. G. (1979) Coexisting sodic and calcic amphiboles from high-pressure metamorphic belts and the stability of barroisitic amphibole. Mineralogical Magazine, 43 (326) 269-278 doi:10.1180/minmag.1979.043.326.09
Plain TextErnst, W. G. (1979) Coexisting sodic and calcic amphiboles from high-pressure metamorphic belts and the stability of barroisitic amphibole. Mineralogical Magazine, 43 (326) 269-278 doi:10.1180/minmag.1979.043.326.09
In(1979, June) Mineralogical Magazine Vol. 43 (326) Mineralogical Society
Abstract/NotesSummaryCompositions of glaucophanes and actinolite-hornblende solid solutions occurring in chemically similar metabasaltic rocks from blueschist terranes in east-central Shikoku, W. California, Valtournanche (W. Alps), and W. Liguria are compared. Chemical contrasts among coexisting Na and Ca amphibole pairs, which reflect disparate P-T histories under the presumed attendance of local equilibrium, include: Na contents are rather high among barroisitic hornblendes from the western and Ligurian Alps, as well as among high-grade tectonic blocks from California; in contrast, actinolitic amphiboles from both lower-grade Franciscan tectonic blocks and in situ schists and the blueschists of Shikoku are impoverished in Na relative to blue-green hornblendes. Sodic amphiboles contain less than 0. 5 Aliv per formula unit, whereas Alvi is very high; a situation reversed among calcic amphiboles. The Na + Ca contents ofglaucophanes are strongly clustered around the sum of 2.0 (i.e. A site vacant) whereas calcic amphiboles have a wider range with the A site variably occupied. No solvus has been detected within either sodic or calcic amphiboles under blueschist facies conditions. For low-grade metabasaltic parageneses, a miscibility gap separates these two amphibole groups; at relatively high grade such compositions have sodic calcic amphiboles of barroisitic type; this may mean that glaucophane + hornblende assemblages are metastable, accounting for textural relations indicating that the sodic amphibole typically did not grow at the same time as the barroisite. Ti, Mn, and K appear to be concentrated in calcic amphibole compared to coexisting glaucophane, probably in the M2, M4, and A sites, respectively.Contrasts in coexisting amphibole tie lines are thought to be a consequence of the fact that the parageneses of Shikoku and California reflect high P and very high P prograde P-T paths respectively, whereas those from Valtournache and W. Liguria show evidence of decompression recrystallization (or back-reaction) of high P (i.e. eclogitic) protoliths. Comparison of the inferred physical conditions operating during the production of these four contrasting paragenetic sequences allows the provisional assignment of a P-T stability region for barroisitic amphibole in metabasaltic rocks as: P 4–5 kb at c. 350°; P 5–7 kb at c. 450 °C.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 2, 2025 23:17:58
Go to top of page