Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Bell, Keith (1981) A review of the geochronology of the Precambrian of Saskatchewan—some clues to uranium mineralization. Mineralogical Magazine, 44 (336) 371-378 doi:10.1180/minmag.1981.044.336.02

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleA review of the geochronology of the Precambrian of Saskatchewan—some clues to uranium mineralization
JournalMineralogical MagazineISSN0026-461X
AuthorsBell, KeithAuthor
Year1981 (December)Volume44
Issue336
PublisherMineralogical Society
Download URLhttps://rruff.info/doclib/MinMag/Volume_44/44-336-371.pdf+
DOIdoi:10.1180/minmag.1981.044.336.02Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID3295Long-form Identifiermindat:1:5:3295:1
GUID0
Full ReferenceBell, Keith (1981) A review of the geochronology of the Precambrian of Saskatchewan—some clues to uranium mineralization. Mineralogical Magazine, 44 (336) 371-378 doi:10.1180/minmag.1981.044.336.02
Plain TextBell, Keith (1981) A review of the geochronology of the Precambrian of Saskatchewan—some clues to uranium mineralization. Mineralogical Magazine, 44 (336) 371-378 doi:10.1180/minmag.1981.044.336.02
In(1981, December) Mineralogical Magazine Vol. 44 (336) Mineralogical Society
Abstract/NotesAbstractAssessment of available geochronological information, as well as new whole-rock Rb-Sr data from several granitoid rocks of Saskatchewan, shows a close relationship between magmatic-metamorphic events in the Hudsonian orogen and uranium mineralization. Most uranium deposits lie to the west of the Needle Falls Shear Zone and occur as either: (i) vein-type deposits or (ii) unconformity-type deposits close to the contact between the Athabasca sediments and their basement. At least two metamorphisms have affected the pre-Athabasca rocks: the Kenoran at about 2500 Ma ago, and the more pervasive ‘main’ Hudsonian event at 1740 Ma. A much younger thermal event (perhaps associated with uplift and cooling) at 1540 Ma is also indicated. The post-Kenoran K-Ar dates suggest prolonged thermal activity from about 1900 Ma through to about 1500 Ma ago. Granitoid events at 1870 Ma and 1740 Ma ago are outlined by both U-Pb zircon and Rb-Sr whole-rock isochron data. Whole-rock Rb-Sr data from the unmetamorphosed Athabasca sediments suggest an approximate depositional age of 1450±50 Ma, a figure that is consistent with the age of the underlying Hudsonian basement and the truncation of the sediments by the Cree Lake diabase dyke swarm at about 1200–1300 Ma ago. Although several episodes of uranium deposition have been documented, the main ones seem to have occurred at 1860 Ma (syngenetic uraninite in pegmatites), 1740 Ma (the Beaverlodge vein-type deposits) and between 1300 and 800 Ma (the epigenetic uranium of the unconformity-type deposits). Whereas the two earlier episodes can be correlated with periods of either magmatic or metamorphic activity, the late Proterozoic episodes cannot. The close agreement between the age of the Cree Lake dyke swarm and the late Proterozoic mineralization suggests that at about 1300 Ma ago possible hydrothermal activity from relatively deep-seated fractures may have been responsible for the solution and transportation of the uranium of the unconformity-type deposits. The period 1300 Ma to about 900 Ma, in other parts of the Canadian Shield, was a time of crustal rifting, basic magmatism, carbonatite activity, and intense deformation. Prior to the deposition of the Athabasca sediments uranium was concentrated by Hudsonian magmatic and metamorphic processes whereas subsequently, transportation and intermittent deposition of the unconformity-type deposits were related to fairly long-lived, low-temperature hydrothermal activity.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 17, 2025 07:44:12
Go to top of page