Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Monier, Gilles, Robert, Jean-Louis (1986) Evolution of the Miscibility Gap Between Muscovite and Biotite Solid Solutions with Increasing Lithium Content: An Experimental Study in the System K2O-Li2O-MgO-FeO-Al2O3-SiO2-H2O-HF at 600°C, 2 kbar PH2O: Comparison with Natural Lithium Micas. Mineralogical Magazine, 50 (358) 641-651 doi:10.1180/minmag.1986.050.358.09

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleEvolution of the Miscibility Gap Between Muscovite and Biotite Solid Solutions with Increasing Lithium Content: An Experimental Study in the System K2O-Li2O-MgO-FeO-Al2O3-SiO2-H2O-HF at 600°C, 2 kbar PH2O: Comparison with Natural Lithium Micas
JournalMineralogical MagazineISSN0026-461X
AuthorsMonier, GillesAuthor
Robert, Jean-LouisAuthor
Year1986 (December)Volume50
Issue358
PublisherMineralogical Society
Download URLhttps://rruff.info/doclib/MinMag/Volume_50/50-358-641.pdf+
DOIdoi:10.1180/minmag.1986.050.358.09Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID3908Long-form Identifiermindat:1:5:3908:0
GUID0
Full ReferenceMonier, Gilles, Robert, Jean-Louis (1986) Evolution of the Miscibility Gap Between Muscovite and Biotite Solid Solutions with Increasing Lithium Content: An Experimental Study in the System K2O-Li2O-MgO-FeO-Al2O3-SiO2-H2O-HF at 600°C, 2 kbar PH2O: Comparison with Natural Lithium Micas. Mineralogical Magazine, 50 (358) 641-651 doi:10.1180/minmag.1986.050.358.09
Plain TextMonier, Gilles, Robert, Jean-Louis (1986) Evolution of the Miscibility Gap Between Muscovite and Biotite Solid Solutions with Increasing Lithium Content: An Experimental Study in the System K2O-Li2O-MgO-FeO-Al2O3-SiO2-H2O-HF at 600°C, 2 kbar PH2O: Comparison with Natural Lithium Micas. Mineralogical Magazine, 50 (358) 641-651 doi:10.1180/minmag.1986.050.358.09
In(1986, December) Mineralogical Magazine Vol. 50 (358) Mineralogical Society
Abstract/NotesAbstractThis paper presents the results of an experimental study of the miscibility gap between trioctahedral and dioctahedral micas in the system K2O Li2O-MgO-FeO-Al2O3-SiO2-H2O-HF at 600°C under 2 kbar PH2O. The existence of this miscibility gap is known from previous experimental studies. The gap is large in the lithium-free system; its width reduces progressively with increasing Li content; for sufficient Li contents (Li > 0.6 atom per formula unit, based on 11 oxygens), a single Li-mica phase is obtained, intermediate between trioctahedral and dioctahedral micas. Any bulk composition located inside the miscibility gap gives an assemblage of two micas, one of the biotite-type and one of the muscovite-type. All the compositions located outside the gap, and, in particular, those belonging to the joins phlogopite-trilithionite and muscovite-zinnwaldite (or its magnesian equivalent) give a single mica phase, provided that the fluorine content is sufficient. The ratio Li/F ≈ 1 is a convenient suitable value. The types of micas and the evolutions of their compositions are well characterized by their interplanar distance d060. These experimental results allow the interpretation of most compositions of naturally occurring lithium micas, in the range 0 ⩽ Li ⩽ 1 a./f.u. Natural micas of biotite-type and muscovite-type are located on both sides of the miscibility gap and their compositions get closer with increasing Li content.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 28, 2025 22:10:36
Go to top of page