Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Canada, Andrew S., Cassel, Elizabeth J., Stockli, Daniel F., Smith, M. Elliot, Jicha, Brian R., Singer, Brad S. (2020) Accelerating exhumation in the Eocene North American Cordilleran hinterland: Implications from detrital zircon (U-Th)/(He-Pb) double dating. Geological Society of America Bulletin, 132 (1) 198-214 doi:10.1130/b35160.1

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleAccelerating exhumation in the Eocene North American Cordilleran hinterland: Implications from detrital zircon (U-Th)/(He-Pb) double dating
JournalGeological Society of America Bulletin
AuthorsCanada, Andrew S.Author
Cassel, Elizabeth J.Author
Stockli, Daniel F.Author
Smith, M. ElliotAuthor
Jicha, Brian R.Author
Singer, Brad S.Author
Year2020 (January 1)Volume132
Issue1
PublisherGeological Society of America
DOIdoi:10.1130/b35160.1Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID45314Long-form Identifiermindat:1:5:45314:5
GUID0
Full ReferenceCanada, Andrew S., Cassel, Elizabeth J., Stockli, Daniel F., Smith, M. Elliot, Jicha, Brian R., Singer, Brad S. (2020) Accelerating exhumation in the Eocene North American Cordilleran hinterland: Implications from detrital zircon (U-Th)/(He-Pb) double dating. Geological Society of America Bulletin, 132 (1) 198-214 doi:10.1130/b35160.1
Plain TextCanada, Andrew S., Cassel, Elizabeth J., Stockli, Daniel F., Smith, M. Elliot, Jicha, Brian R., Singer, Brad S. (2020) Accelerating exhumation in the Eocene North American Cordilleran hinterland: Implications from detrital zircon (U-Th)/(He-Pb) double dating. Geological Society of America Bulletin, 132 (1) 198-214 doi:10.1130/b35160.1
Abstract/NotesAbstract
Basins in orogenic hinterlands are directly coupled to crustal thickening and extension through landscape processes and preserve records of deformation that are unavailable in footwall rocks. Following prolonged late Mesozoic–early Cenozoic crustal thickening and plateau construction, the hinterland of the Sevier orogen of western North America underwent late Cenozoic extension and formation of metamorphic core complexes. While the North American Cordillera is one of Earth’s best-studied orogens, estimates for the spatial and temporal patterns of initial extensional faulting differ greatly and thus limit understanding of potential drivers for deformation. We employed (U-Th)/(He-Pb) double dating of detrital zircon and (U-Th)/He thermochronology of detrital apatite from precisely dated Paleogene terrestrial strata to quantify the timing and magnitude of exhumation and explore the linkages between tectonic unroofing and basin evolution in northeastern Nevada. We determined sediment provenance and lag time evolution (i.e., the time between cooling and deposition, which is a measure of upper-crustal exhumation) during an 8 m.y. time span of deposition within the Eocene Elko Basin. Fluvial strata deposited between 49 and 45 Ma yielded Precambrian (U-Th)/He zircon cooling ages (ZHe) with 105–740 m.y. lag times dominated by unreset detrital ages, suggesting limited exhumation and Proterozoic through early Eocene sediment burial (<4–6 km) across the region. Minimum nonvolcanic detrital ZHe lag times decreased to <100 m.y. in 45–43 Ma strata and to <10 m.y. in 43–41 Ma strata, illustrating progressive and rapid hinterland unroofing in Eocene time. Detrital apatite (U-Th)/He ages present in ca. 44 and 39 Ma strata record Eocene cooling ages with 1–20 m.y. lag times. These data reflect acceleration of basement exhumation rates by >1 km/m.y., indicative of rapid, large-magnitude extensional faulting and metamorphic core complex formation. Contemporaneous with this acceleration of hinterland exhumation, syntectonic freshwater lakes developed in the hanging wall of the Ruby Mountains–East Humboldt Range metamorphic core complex at ca. 43 Ma. Volcanism driven by Farallon slab removal migrated southward across northeastern Nevada, resulting in voluminous rhyolitic eruptions at 41.5 and 40.1 Ma, and marking the abrupt end of fluvial and lacustrine deposition across much of the Elko Basin. Thermal and rheologic weakening of the lithosphere and/or partial slab removal likely initiated extensional deformation, rapidly unroofing deeper crustal levels. We attribute the observed acceleration in exhumation, expansion of sedimentary basins, and migrating volcanism across the middle Eocene to record the thermal and isostatic effects of Farallon slab rollback and subsequent removal of the lowermost mantle lithosphere.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 20, 2025 04:57:09
Go to top of page