Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Johnson, Samuel Y. (1984) Stratigraphy, age, and paleogeography of the Eocene Chuckanut Formation, northwest Washington. Canadian Journal of Earth Sciences, 21 (1) 92-106 doi:10.1139/e84-010

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleStratigraphy, age, and paleogeography of the Eocene Chuckanut Formation, northwest Washington
JournalCanadian Journal of Earth Sciences
AuthorsJohnson, Samuel Y.Author
Year1984 (January 1)Volume21
Issue1
PublisherCanadian Science Publishing
DOIdoi:10.1139/e84-010Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID478063Long-form Identifiermindat:1:5:478063:6
GUID0
Full ReferenceJohnson, Samuel Y. (1984) Stratigraphy, age, and paleogeography of the Eocene Chuckanut Formation, northwest Washington. Canadian Journal of Earth Sciences, 21 (1) 92-106 doi:10.1139/e84-010
Plain TextJohnson, Samuel Y. (1984) Stratigraphy, age, and paleogeography of the Eocene Chuckanut Formation, northwest Washington. Canadian Journal of Earth Sciences, 21 (1) 92-106 doi:10.1139/e84-010
In(1984, January) Canadian Journal of Earth Sciences Vol. 21 (1) Canadian Science Publishing
Abstract/Notes The Eocene Chuckanut Formation of Washington's North Cascades comprises as much as 6000 m of alluvial strata and is one of the thickest nonmarine sequences in North America. It is exposed in several disconnected outcrop belts that are remnants of what was probably an extensive fluvial system in western Washington. In this study, seven stratigraphic members are defined in the main outcrop belt of the Chuckanut Formation near the town of Bellingham. Their ages, based on fission-track zircon dates, palynologic studies, and correlation by mapping, extend from the Early to the Late Eocene.Three types of fluvial systems contributed to the Chuckanut Formation and are distinguished on the basis of their lithology, sedimentology, and petrology. The first comprises fine-load meandering-river deposits of the Lower Eocene Bellingham Bay Member and the Middle Eocene Slide Member. Sandstones are arkosic and had their main source in rapidly uplifted, high-grade metamorphic terranes in eastern Washington. The second type comprises braided- and coarse-load meandering-river deposits of the Middle to Upper Eocene Padden Member. The Padden Member occurs only in the western part of the outcrop belt and was derived form the Coast Plutonic Complex of southern British Columbia to the north. Sandstones are arkosic but are richer in lithic fragments than sandstones of the underlying Bellingham Bay Member and interfingering Slide Member. The third fluvial-system type comprises conglomerate-rich braided-river and alluvial-fan deposits of the lower Middle Eocene Governors Point Member and the Middle to Upper (?) Eocene Maple Falls, Warnick, and Bald Mountain members. Sandstones from these units are both lithic and arkosic. These strata were locally derived from uplifts on the northern basin margin.The petrology of down-basin correlatives of the Chuckanut Formation on the northeast Olympic Peninsula is incompatible with derivation through the Chuckanut fluvial system. This petrologic contrast supports a model for large-scale Eocene dextral offsets in the continental margin of Washington.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 19, 2025 13:29:49
Go to top of page