Vote for your favorite mineral in #MinCup25! - Stibnite vs. Perovskite
It's all about how minerals interact with humans as dramatic #stibnite faces off against futuristic #perovskite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Smith, J. M., Erdmer, P. (1990) The Anvil aureole, an atypical mid-Cretaceous culmination in the northern Canadian Cordillera. Canadian Journal of Earth Sciences, 27 (3) 344-356 doi:10.1139/e90-032

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleThe Anvil aureole, an atypical mid-Cretaceous culmination in the northern Canadian Cordillera
JournalCanadian Journal of Earth Sciences
AuthorsSmith, J. M.Author
Erdmer, P.Author
Year1990 (March 1)Volume27
Issue3
PublisherCanadian Science Publishing
DOIdoi:10.1139/e90-032Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID480825Long-form Identifiermindat:1:5:480825:5
GUID0
Full ReferenceSmith, J. M., Erdmer, P. (1990) The Anvil aureole, an atypical mid-Cretaceous culmination in the northern Canadian Cordillera. Canadian Journal of Earth Sciences, 27 (3) 344-356 doi:10.1139/e90-032
Plain TextSmith, J. M., Erdmer, P. (1990) The Anvil aureole, an atypical mid-Cretaceous culmination in the northern Canadian Cordillera. Canadian Journal of Earth Sciences, 27 (3) 344-356 doi:10.1139/e90-032
In(1990, March) Canadian Journal of Earth Sciences Vol. 27 (3) Canadian Science Publishing
Abstract/Notes The mid-Cretaceous Anvil batholith, in south-central Yukon near Faro, intrudes Upper Proterozoic to upper Paleozoic strata of the Cordilleran outer miogeocline. From previous work, it was unclear whether biotite, andalusite–staurolite, and garnet isograds near the pluton resulted from pre-Devonian regional metamorphism and subsequent arching in a structural culmination or from mid-Cretaceous instrusion. The present study has documented biotite, andalusite, staurolite, garnet, and sillimanite isograds concentric to the pluton. Prophyroblast–matrix relationships indicate that peak metamorphism occurred during intrusion, which took place under approximately 3 kbar (300 MPa) pressure and heated country rock to temperatures of 600°–620 °C. The metamorphism is thus compatible with a deep, mid-Cretaceous event. Regional uplift of 10 km is implied by the metamorphic minerals. From cogenetic relationships between some phases of the Anvil batholith and the nearby South Fork volcanic rocks, regional uplift appears to have been completed in a few million years in the mid-Cretaceous. The uncharacteristic aureole suggests that mid-Cretaceous events in this region are atypical of the Cordillera and may reflect a unique tectonic history or position in the orogen.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 18, 2025 16:47:13
Go to top of page