Vote for your favorite mineral in #MinCup25! - Sanidine vs. Hematite
It's a pair of often-overlooked classics as potassium feldspar sanidine competes with iron ore hematite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Yuan, Tianson, Spence, G. D., Hyndman, R. D. (1992) Structure beneath Queen Charlotte Sound from seismic-refraction and gravity interpretations. Canadian Journal of Earth Sciences, 29 (7) 1509-1529 doi:10.1139/e92-120

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleStructure beneath Queen Charlotte Sound from seismic-refraction and gravity interpretations
JournalCanadian Journal of Earth Sciences
AuthorsYuan, TiansonAuthor
Spence, G. D.Author
Hyndman, R. D.Author
Year1992 (July 1)Volume29
Issue7
PublisherCanadian Science Publishing
DOIdoi:10.1139/e92-120Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID481806Long-form Identifiermindat:1:5:481806:3
GUID0
Full ReferenceYuan, Tianson, Spence, G. D., Hyndman, R. D. (1992) Structure beneath Queen Charlotte Sound from seismic-refraction and gravity interpretations. Canadian Journal of Earth Sciences, 29 (7) 1509-1529 doi:10.1139/e92-120
Plain TextYuan, Tianson, Spence, G. D., Hyndman, R. D. (1992) Structure beneath Queen Charlotte Sound from seismic-refraction and gravity interpretations. Canadian Journal of Earth Sciences, 29 (7) 1509-1529 doi:10.1139/e92-120
In(1992, July) Canadian Journal of Earth Sciences Vol. 29 (7) Canadian Science Publishing
Abstract/Notes A combined multichannel seismic reflection and refraction survey was carried out in July 1988 to study the Tertiary sedimentary basin architecture and formation and to define the crustal structure and associated plate interactions in the Queen Charlotte Islands region. Simultaneously with the collection of the multichannel reflection data, refractions and wide-angle reflections from the airgun array shots were recorded on single-channel seismographs distributed on land around Hecate Strait and Queen Charlotte Sound. For this paper a subset of the resulting data set was chosen to study the crustal structure in Queen Charlotte Sound and the nearby subduction zone.Two-dimensional ray tracing and synthetic seismogram modelling produced a velocity structure model in Queen Charlotte Sound. On a margin-parallel line, Moho depth was modelled at 27 km off southern Moresby Island but only 23 km north of Vancouver Island. Excluding the approximately 5 km of the Tertiary sediments, the crust in the latter area is only about 18 km thick, suggesting substantial crustal thinning in Queen Charlotte Sound. Such thinning of the crust supports an extensional mechanism for the origin of the sedimentary basin. Deep crustal layers with velocities of more than 7 km/s were interpreted in the southern portion of Queen Charlotte Sound and beneath the continental margin. They could represent high-velocity material emplaced in the crust from earlier subduction episodes or mafic intrusion associated with the Tertiary volcanics.Seismic velocities of both sediment and upper crust layers are lower in the southern part of Queen Charlotte Sound than in the region near Moresby Island. Well velocity logs indicate a similar velocity variation. Gravity modelling along the survey line parallel to the margin provides additional constraints on the structure. The data require lower densities in the sediment and upper crust of southern Queen Charlotte Sound. The low-velocity, low-density sediments in the south correspond to high-porosity marine sediments found in wells in that region and contrast with lower porosity nonmarine sediments in wells farther north.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 7, 2025 12:23:24
Go to top of page