Vote for your favorite mineral in #MinCup25! - Stibnite vs. Perovskite
It's all about how minerals interact with humans as dramatic #stibnite faces off against futuristic #perovskite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Kurtz, R. D., Gupta, J. C. (1992) Shallow and deep crustal conductivity studies in the Miramichi earthquake zone, New Brunswick. Canadian Journal of Earth Sciences, 29 (7) 1549-1564 doi:10.1139/e92-122

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleShallow and deep crustal conductivity studies in the Miramichi earthquake zone, New Brunswick
JournalCanadian Journal of Earth Sciences
AuthorsKurtz, R. D.Author
Gupta, J. C.Author
Year1992 (July 1)Volume29
Issue7
PublisherCanadian Science Publishing
DOIdoi:10.1139/e92-122Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID481811Long-form Identifiermindat:1:5:481811:7
GUID0
Full ReferenceKurtz, R. D., Gupta, J. C. (1992) Shallow and deep crustal conductivity studies in the Miramichi earthquake zone, New Brunswick. Canadian Journal of Earth Sciences, 29 (7) 1549-1564 doi:10.1139/e92-122
Plain TextKurtz, R. D., Gupta, J. C. (1992) Shallow and deep crustal conductivity studies in the Miramichi earthquake zone, New Brunswick. Canadian Journal of Earth Sciences, 29 (7) 1549-1564 doi:10.1139/e92-122
In(1992, July) Canadian Journal of Earth Sciences Vol. 29 (7) Canadian Science Publishing
Abstract/Notes The occurrence in early 1982 of four earthquakes in north-central New Brunswick with magnitudes ranging from 5.0 to 5.7 mb prompted detailed electromagnetic surveys of the epicentral region. Scalar audiomagnetotelluric (AMT) measurements, spaced at 100 m intervals or less, along a 7.5 km east–west profile located two conductors but did not find anomalies that could be associated with the proposed fault plane defined by the earthquake hypocentres.The 150 AMT measurements, combined with broad-band tensor soundings at 11 sites in a confined region (6 km × 7.5 km), provided an opportunity to study the distorting effects of near-surface anomalies and also to determine the regional conductivity structure. The apparent resistivity and phase curves from all tensor stations, calculated in a common coordinate system, were remarkably similar (except for static shift of the apparent resistivity curves) to those derived from the rotationally invariant Berdichevsky determinant averages. These averages appear to be very effective for deriving a first-order estimate of the conductivity structure in areas for which near-surface anomalies are a problem.A geometric mean of the AMT measurements was used to estimate the correct level for the high-frequency asymptotes of the tensor apparent resistivity curves. A one-dimensional inversion of the tensor magnetotelluric (MT) data, with the apparent resistivity shifted to the AMT average, yields a four-layer electrical conductivity model for the crust, with depths from the surface of 2.4, 19, and 32 km and with resistivities of 10 000, >100 000, 10 000, and 300 Ω∙m. The crustal resistivities in the Miramichi region are considerably larger than those in other regions in eastern North America but are typical for the Precambrian Shield. As well, there is an indication of lower crustal and (or) upper mantle electrical anisotropy. The geomagnetic transfer function data suggest the presence of a north-northwest-trending structure 7–12 km east of the Miramichi survey area. At present there is little other geophysical or geological evidence for this conductive anomaly.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 18, 2025 20:38:51
Go to top of page