Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Li, Huiling, Beske-Diehl, S. (1993) Low-temperature metamorphism and secondary components in the Portage Lake Volcanics: a reassessment. Canadian Journal of Earth Sciences, 30 (7) 1404-1414 doi:10.1139/e93-121

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleLow-temperature metamorphism and secondary components in the Portage Lake Volcanics: a reassessment
JournalCanadian Journal of Earth Sciences
AuthorsLi, HuilingAuthor
Beske-Diehl, S.Author
Year1993 (July 1)Volume30
Issue7
PublisherCanadian Science Publishing
DOIdoi:10.1139/e93-121Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID482244Long-form Identifiermindat:1:5:482244:2
GUID0
Full ReferenceLi, Huiling, Beske-Diehl, S. (1993) Low-temperature metamorphism and secondary components in the Portage Lake Volcanics: a reassessment. Canadian Journal of Earth Sciences, 30 (7) 1404-1414 doi:10.1139/e93-121
Plain TextLi, Huiling, Beske-Diehl, S. (1993) Low-temperature metamorphism and secondary components in the Portage Lake Volcanics: a reassessment. Canadian Journal of Earth Sciences, 30 (7) 1404-1414 doi:10.1139/e93-121
In(1993, July) Canadian Journal of Earth Sciences Vol. 30 (7) Canadian Science Publishing
Abstract/Notes We studied the effects of hydrothermal alteration on magnetic properties of the magnetite and hematite components in the 1.1 Ga Portage Lake Volcanics, Upper Peninsula, Michigan. Results show the importance of the intensity and direction of the hematite magnetization in the detection of secondary magnetite overprints in basalts. We collected samples from 20 flows in two stratigraphic sections, one from outcrops and the other from drill core. The remanence unblocked below 590 °C during thermal demagnetization is considered to be due to magnetite, and that unblocked between 610–690 °C is considered to be due to hematite. Hematite remanent intensities in the flow interiors are an order of magnitude less intense than those of magnetite, and correlate with magnetite intensities from the top of the volcanics to the lower prehnite–pumpellyite zone (5.5 km depth) in the outcrop section and to the epidote–pumpellyite zone (7.0 km depth) in the core section. These magnetic properties are very similar to those of Recent Icelandic basalt flows. Below these depths, magnetite intensities decrease until they are equal to hematite intensities. Hematite remanent intensities do not consistently increase with depth, suggesting that secondary hematite produced during hydrothermal alteration is a minor contributor to hematite intensities. The magnetite directions become distinct from the hematite directions in the prehnite–pumpellyite zone (6.2 km depth). This difference in directions indicates an unresolved secondary overprint formed during hydrothermal alteration. We conclude that the magnetite component carries a secondary overprint; a conclusion that contrasts with that of a previous study. Thermo-viscous remanent magnetization obtained over a time period of 1–10 Ma near 300 °C would be enough to account for much of the secondary component.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 28, 2025 14:23:50
Go to top of page