Vote for your favorite mineral in #MinCup25! - Cuprosklodowskite vs. Ikaite
It's radioactive #cuprosklodowskite vs ephemeral #ikaite for today's match.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Lucotte, Marc, Hillaire-Marcel, Claude (1994) Identification et distribution des grandes masses d'eau dans les mers du Labrador et d'Irminger. Canadian Journal of Earth Sciences, 31 (1) 5-13 doi:10.1139/e94-002

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleIdentification et distribution des grandes masses d'eau dans les mers du Labrador et d'Irminger
JournalCanadian Journal of Earth Sciences
AuthorsLucotte, MarcAuthor
Hillaire-Marcel, ClaudeAuthor
Year1994 (January 1)Volume31
Issue1
PublisherCanadian Science Publishing
DOIdoi:10.1139/e94-002Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID482362Long-form Identifiermindat:1:5:482362:3
GUID0
Full ReferenceLucotte, Marc, Hillaire-Marcel, Claude (1994) Identification et distribution des grandes masses d'eau dans les mers du Labrador et d'Irminger. Canadian Journal of Earth Sciences, 31 (1) 5-13 doi:10.1139/e94-002
Plain TextLucotte, Marc, Hillaire-Marcel, Claude (1994) Identification et distribution des grandes masses d'eau dans les mers du Labrador et d'Irminger. Canadian Journal of Earth Sciences, 31 (1) 5-13 doi:10.1139/e94-002
In(1994, January) Canadian Journal of Earth Sciences Vol. 31 (1) Canadian Science Publishing
Abstract/Notes The main deep water masses present at the time of the CSS Hudson cruises in Labrador and Irminger seas in June 1990 and October–November 1991 have been identified using characteristic temperatures (T) and salinities (S). The purpose of this study was to establish the transfer functions between micropaleontological assemblages of top sediments and thermohaline characteristics of water masses. The water mass at the top of the Labrador Sea (Labrador Sea Water, LSW) is formed after intense movements of winter convection in the first 900-m depth of the water column. Below that depth, the LSW parameters reach a double minimum (S ≈ 34.80 and T ≈ 2.9 °C). Only the sediments located on the continental slopes of Greenland and Labrador between depths of 500 and 1500 m are in contact with the LSW. Below the LSW, the superior fraction of the North East Atlantic Deep Water (NEADW1) is characterized by a temperature maximum (≈ 3.3 °C) and, as such, is distinguishable from the inferior fraction (NEADW2). The latter is characterized by a maximum S (≈ 34, 90) when compared with other intermediary and deep water masses. In contrast to the NEADW1 that freely circulates over the Reykjanes Ridge, the NEADW2 must flow through the Charlie Gibbs Fracture Zone to go from the northeastern Atlantic to the Irminger Sea. The NEADW 1 and 2 respectively bathe the ridge section less than 2000 m deep and the European abyssal basins. On the contrary, the majority of the deep sediments of the Labrador and Irminger seas are in contact with the cold (T < 2.6 °C) and salty (≈ 34.85) Denmark Strait Overflow Water. Although this water mass is normally found at depths exceeding 2700 m in pelagic environments, it can be found at less than 2000-m depth on the bottom of the continental slopes of Greenland and Labrador, where it is carried by the strong Deep Northern Boundary Current and Western Boundary Undercurrent. The presence of the NEADW 1 and 2 on the sediments is then restricted to narrow bands on the same continental slopes, between depths of 1800 and 2200 m.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 14, 2025 14:10:27
Go to top of page