Vote for your favorite mineral in #MinCup25! - Kosmochlor vs. Azurite
It's a battle of green vs blue as rare but vibrant chromium-bearing kosmochlor up against the deep blue copper alteration mineral azurite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Jackson, S. L., Cruden, A. R., White, D., Milkereit, B. (1995) A seismic-reflection-based regional cross section of the southern Abitibi greenstone belt. Canadian Journal of Earth Sciences, 32 (2) 135-148 doi:10.1139/e95-012

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleA seismic-reflection-based regional cross section of the southern Abitibi greenstone belt
JournalCanadian Journal of Earth Sciences
AuthorsJackson, S. L.Author
Cruden, A. R.Author
White, D.Author
Milkereit, B.Author
Year1995 (February 1)Volume32
Issue2
PublisherCanadian Science Publishing
DOIdoi:10.1139/e95-012Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID482612Long-form Identifiermindat:1:5:482612:9
GUID0
Full ReferenceJackson, S. L., Cruden, A. R., White, D., Milkereit, B. (1995) A seismic-reflection-based regional cross section of the southern Abitibi greenstone belt. Canadian Journal of Earth Sciences, 32 (2) 135-148 doi:10.1139/e95-012
Plain TextJackson, S. L., Cruden, A. R., White, D., Milkereit, B. (1995) A seismic-reflection-based regional cross section of the southern Abitibi greenstone belt. Canadian Journal of Earth Sciences, 32 (2) 135-148 doi:10.1139/e95-012
In(1995, February) Canadian Journal of Earth Sciences Vol. 32 (2) Canadian Science Publishing
Abstract/Notes Seismic reflection profiles from the southern Abitibi greenstone belt reveal four first-order subdivisions: (1) Between 0 and ~4.5 s, the upper crust is weakly reflective, with prominent local to laterally extensive reflections. (2) Between ~4 and ~9 s, the crust is strongly and heterogeneously reflective with laterally continuous reflections. (3) From ~9 to ~13 s, the crust is more homogeneously reflective and displays downward decreasing reflectivity. (4) Below ~13 s (Moho?) the upper mantle is weakly reflective. The upper layer may correspond to subgreenschist–greenschist-facies supracrustal rocks cut by low-angle shear zones and intruded by regional tabular batholiths; the middle layer, to ductiley deformed amphibolite-facies gneisses, granitoids, and (or) metasediments; and the lower layer, to more homogeneously deformed granulite-facies rocks. North-dipping, low-angle reflections extending beneath both diverse supracrustal assemblages and regional batholiths may represent structural detachments upon which both the supracrustal assemblages and batholiths were imbricated and translated southward. However, the preservation of regional low-pressure metamorphic rocks and the common para-autochthonous relationships between assemblages suggest that thrust-related vertical separations and the magnitude of crustal thickening were not large. Steeply dipping regional shear zones within the greenstone belt appear to disrupt subhorizontal reflections down to ~15 km and may represent late-tectonic strains, which were progressively concentrated into linear zones during continued north–south shortening. The crustal-scale structure determined from the seismic reflection profiles, combined with surface geology, is compatible with post-2.70 Ga north–south shortening accommodated by south-directed(?) thrusting in a thermally softened mid crust and by upright folding in the upper crust. This scenario is comparable to recently proposed models for the Paleozoic, high-temperature, low-pressure Lachlan fold belt of Australia.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 9, 2025 13:07:50
Go to top of page