Vote for your favorite mineral in #MinCup25! - Jeremejevite vs. Haüyne
Are you ready for a battle of the blues? In a match of newcomers, volcanic gem hauyne is taking on rare jeremejevite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Barendregt, R. W., Enkin, R. J., Baker, J., Duk-Rodkin, A. (1996) Paleomagnetic evidence for late Cenozoic glaciations in the Mackenzie Mountains of the Northwest Territories, Canada. Canadian Journal of Earth Sciences, 33 (6) 896-903 doi:10.1139/e96-067

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitlePaleomagnetic evidence for late Cenozoic glaciations in the Mackenzie Mountains of the Northwest Territories, Canada
JournalCanadian Journal of Earth Sciences
AuthorsBarendregt, R. W.Author
Enkin, R. J.Author
Baker, J.Author
Duk-Rodkin, A.Author
Year1996 (June 1)Volume33
Issue6
PublisherCanadian Science Publishing
DOIdoi:10.1139/e96-067Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID482829Long-form Identifiermindat:1:5:482829:1
GUID0
Full ReferenceBarendregt, R. W., Enkin, R. J., Baker, J., Duk-Rodkin, A. (1996) Paleomagnetic evidence for late Cenozoic glaciations in the Mackenzie Mountains of the Northwest Territories, Canada. Canadian Journal of Earth Sciences, 33 (6) 896-903 doi:10.1139/e96-067
Plain TextBarendregt, R. W., Enkin, R. J., Baker, J., Duk-Rodkin, A. (1996) Paleomagnetic evidence for late Cenozoic glaciations in the Mackenzie Mountains of the Northwest Territories, Canada. Canadian Journal of Earth Sciences, 33 (6) 896-903 doi:10.1139/e96-067
In(1996, June) Canadian Journal of Earth Sciences Vol. 33 (6) Canadian Science Publishing
Abstract/Notes The Mackenzie Mountains were affected by montane valley glaciers during the Pleistocene and peripherally by the Laurentide Ice Sheet during the last glaciation. In this paper we report on magnetostratigraphic dating and correlation of three sections recording Late Pliocene to Late Pleistocene glaciations: Katherine Creek, Little Bear River, and Inlin Brook (located around 65°N, 127°W). Each section consists of a colluvial unit overlying a Pliocene pediment surface cut into Proterozoic or Paleozoic bedrock, or Tertiary gravel, which is in turn overlain by a stack of five, and in places six, montane tills, usually with soils developed at their surfaces, and capped by a Laurentide till. Normal and reversed magnetizations were recognized with single-domain magnetite as a dominant remanence carrier. The Katherine Creek section has a normally magnetized colluvium at its base, which is overlain by two reversed tills, succeeded by three normal tills. We interpret the top two tills to be of Brunhes age (< 780 ka) but argue that the lowermost normal till is of probable Olduvai age (ca. 1.8 Ma). The two underlying tills are of Matuyama age (2.6 Ma to 780 ka), and the colluvial base is assigned to the Gauss (3.5–2.6 Ma). The Little Bear River section exposes a stratigraphic record similar to that found at Katherine Creek. Only four units could be assigned a paleomagnetic polarity, the others yielding incoherent results. Paleosols on the first and second till units were reversed and normal, respectively, and the top till was normal. Thus there is clear evidence of an older (reversed) Pleistocene glaciation and a magnetostratigraphic record compatible with that found at Katherine Creek. Magnetic measurements from Inlin Brook gave largely incoherent results, with the exception of the surface (Laurentide) till, which is normal. The glacial history recorded in the Mackenzie Mountains correlates well with other studies carried out in the Cordillera. The large-scale changes in climate revealed in these terrestrial records provide baseline data for paleoenvironmental reconstruction.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 3, 2025 05:05:38
Go to top of page