Vote for your favorite mineral in #MinCup25! - Kosmochlor vs. Azurite
It's a battle of green vs blue as rare but vibrant chromium-bearing kosmochlor up against the deep blue copper alteration mineral azurite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Oliot, Emilien, Melleton, Jérémie, Schneider, Julie, Corsini, Michel, Gardien, Véronique, Rolland, Yann (2015) Variscan crustal thickening in the Maures-Tanneron massif (South Variscan belt, France): new in situ monazite U-Th-Pb chemical dating of high-grade rocks. Bulletin de la Société géologique de France, 186 (2) 145-169 doi:10.2113/gssgfbull.186.2-3.145

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleVariscan crustal thickening in the Maures-Tanneron massif (South Variscan belt, France): new in situ monazite U-Th-Pb chemical dating of high-grade rocks
JournalBulletin de la Société géologique de France
AuthorsOliot, EmilienAuthor
Melleton, JérémieAuthor
Schneider, JulieAuthor
Corsini, MichelAuthor
Gardien, VéroniqueAuthor
Rolland, YannAuthor
Year2015 (March 1)Volume186
Issue2
PublisherEDP Sciences
DOIdoi:10.2113/gssgfbull.186.2-3.145Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID530814Long-form Identifiermindat:1:5:530814:3
GUID0
Full ReferenceOliot, Emilien, Melleton, Jérémie, Schneider, Julie, Corsini, Michel, Gardien, Véronique, Rolland, Yann (2015) Variscan crustal thickening in the Maures-Tanneron massif (South Variscan belt, France): new in situ monazite U-Th-Pb chemical dating of high-grade rocks. Bulletin de la Société géologique de France, 186 (2) 145-169 doi:10.2113/gssgfbull.186.2-3.145
Plain TextOliot, Emilien, Melleton, Jérémie, Schneider, Julie, Corsini, Michel, Gardien, Véronique, Rolland, Yann (2015) Variscan crustal thickening in the Maures-Tanneron massif (South Variscan belt, France): new in situ monazite U-Th-Pb chemical dating of high-grade rocks. Bulletin de la Société géologique de France, 186 (2) 145-169 doi:10.2113/gssgfbull.186.2-3.145
In(2015, March) Bulletin de la Société géologique de France Vol. 186 (2) EDP Sciences
Abstract/NotesAbstract
Age constraints on the protoliths, deformation, metamorphism and melting events are key parameters when correlating different continental lithospheric remnants among each other and disentangling their evolution within large-scale orogens. In situ U-Th-Pb chemical dating on monazites using Electron Probe Micro-Analyser (EPMA) has been performed on eight samples throughout the Variscan Maures-Tanneron massif (SE France) in order to date the medium to high-tectonothermal events related to the Variscan orogeny.
Results indicate a polyphased crustal evolution : (i) U-Th-Pb ages obtained in polygenetic monazite grain cores gave inherited Upper Ordovician (456 ± 11 Ma) age, highlighting the large scale occurrence of the Ordovician magmatic activity in the North Gondwanian margin. An Early Devonian (404 ± 10 Ma) age may date a protolith emplacement related to calc-alkaline supra-subduction magmatism or could be associated to an early medium-grade metamorphism, prior to collisional stage. (ii) The crustal thickening stage has been further recorded in prograde metamorphic monazites formed during the underthrusting and subsequent nappe stacking events, under amphibolite facies conditions. This stage is dated between 382 ± 11 (Middle Devonian) and 331 ± 5 Ma (Late Visean). (iii) An orogenic partial melting event took place during Middle Carboniferous and is accompanied by the crystallization of crustal peraluminous magmas (Plan-de-la-Tour granite, 329 ± 3 Ma).
This contribution demonstrates the capacity of monazite to record the prograde path of rocks during increasing metamorphic conditions related to stages of crustal thickening, and the robustness of the U-Th-Pb chronometer in monazite despite the overprinting of high-grade thermal events, including partial melting. The age ranges of the different orogenic stages reported in this study are in good agreement with those reported in adjacent Variscan Corsica and Sardinia; while correlations with other nearest Variscan massifs like the Argentera massif in the southwestern Alps or the French Massif Central remain more hypothetic. The Internal Zone of the Maures-Tanneron massif, and more widely the Internal Zone of the Maures-Tanneron-Corsica-Sardinia segment, is part of the southern orogenic root system of the Variscan belt.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 9, 2025 16:24:03
Go to top of page