Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Markl, Gregor, Keim, Maximilian F., Bayerl, Richard (2019) Unusual Mineral Diversity in a Hydrothermal Vein-type Deposit: the Clara Mine, SW Germany, as a Type Example. The Canadian Mineralogist, 57 (4) 427-456 doi:10.3749/canmin.1900003

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleUnusual Mineral Diversity in a Hydrothermal Vein-type Deposit: the Clara Mine, SW Germany, as a Type Example
JournalThe Canadian Mineralogist
AuthorsMarkl, GregorAuthor
Keim, Maximilian F.Author
Bayerl, RichardAuthor
Year2019 (July 15)Volume57
Issue4
PublisherMineralogical Association of Canada
DOIdoi:10.3749/canmin.1900003Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID65579Long-form Identifiermindat:1:5:65579:8
GUID0
Full ReferenceMarkl, Gregor, Keim, Maximilian F., Bayerl, Richard (2019) Unusual Mineral Diversity in a Hydrothermal Vein-type Deposit: the Clara Mine, SW Germany, as a Type Example. The Canadian Mineralogist, 57 (4) 427-456 doi:10.3749/canmin.1900003
Plain TextMarkl, Gregor, Keim, Maximilian F., Bayerl, Richard (2019) Unusual Mineral Diversity in a Hydrothermal Vein-type Deposit: the Clara Mine, SW Germany, as a Type Example. The Canadian Mineralogist, 57 (4) 427-456 doi:10.3749/canmin.1900003
In(2019, July) The Canadian Mineralogist Vol. 57 (4) Mineralogical Association of Canada
Abstract/NotesAbstract
The Clara baryte-fluorite-(Ag-Cu) mine exploits a polyphase, mainly Jurassic to Cretaceous, hydrothermal unconformity vein-type deposit in the Schwarzwald, SW Germany. It is the type locality for 13 minerals, and more than 400 different mineral species have been described from this occurrence, making it one of the top five localities for mineral diversity on Earth.
The unusual mineral diversity is mainly related to the large number and diversity of secondary, supergene, and low-temperature hydrothermal phases formed from nine different primary ore-gangue associations observed over the last 40 years; these are: chert/quartz-hematite-pyrite-ferberite-scheelite with secondary W-bearing phases; fluorite-arsenide-selenide-uraninite-pyrite with secondary selenides and U-bearing phases (arsenates, oxides, vanadates, sulfates, and others); fluorite-sellaite with secondary Sr- and Mg-bearing phases; baryte-tennantite/tetrahedrite ss-chalcopyrite with secondary Cu arsenates, carbonates, and sulfates; baryte-tennantite/tetrahedrite ss-polybasite/pearceite-chalcopyrite, occasionally accompanied by Ag±Bi±Pb-bearing sulfides with secondary Sb oxides, Cu arsenates, carbonates, and sulfates; baryte-chalcopyrite with secondary Fe- and Cu-phosphates; baryte-pyrite-marcasite-chalcopyrite with secondary Fe- and Cu-sulfates; quartz-galena-gersdorffite-matildite with secondary Pb-, Bi-, Co-, and Ni-bearing phases; and siderite-dolomite-calcite-gypsum/anhydrite-quartz associations.
The first eight associations are of Jurassic to Cretaceous age and are related to at least eight different pulses of hydrothermal fluids (plus the meteoric fluids responsible for supergene oxidation); the last association is of Neogene age. Spatial juxtaposition of the various primary associations produces overlaps of the secondary associations. In addition to natural oxidation processes, two anthropogenic additions led to specific mineral associations: (1) lining of the adit walls with concrete resulted in high-pH assemblages of mainly Ca-rich phases, including arsenates and sulfates; and (2) the addition of hydrofluoric acid to counterbalance the high-pH fluids produced by power plant ashes introduced into the exploited parts of the mine resulted in fluoride assemblages of alkali and alkaline earth metals.
This contribution describes for the first time all types of assemblages and associations observed and physicochemical considerations and models of formation for some of the supergene associations. The meteoric fluids responsible for element mobilization and redistribution, and for the formation of new, secondary phases, interacted with wall rocks prior to and during percolation through the actual hydrothermal associations. Depending on the amount of reaction with ore, gangue, and host rock phases, the chemical composition of the meteoric fluids and its redox potential may vary over short distances. Hence different mineral assemblages and zoned associations record fluid compositional changes, even on the millimeter to centimeter scale. Unusual mineral diversity at the Clara mine therefore develops from a combination of diverse primary hydrothermal mineralization stages, an unusual number of fluid flow events involving compositionally different fluids, and local equilibrium conditions that change within centimeters during supergene processes involving meteoric fluids and anthropogenic additions.

Map of Localities

Locality Pages

LocalityCitation Details
Clara Mine, Oberwolfach, Ortenaukreis, Freiburg Region, Baden-Württemberg, Germany

Mineral Pages

MineralCitation Details
Cornubite
Delafossite
Duftite
Zharchikhite


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 15, 2025 16:23:23
Go to top of page