Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Kolitsch, U., Giester, G. (2000) The crystal structure of faustite and its copper analogue turquoise. Mineralogical Magazine, 64 (5) 905-913 doi:10.1180/002646100549733

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleThe crystal structure of faustite and its copper analogue turquoise
JournalMineralogical Magazine
AuthorsKolitsch, U.Author
Giester, G.Author
Year2000 (October)Volume64
Issue5
PublisherMineralogical Society
DOIdoi:10.1180/002646100549733Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID243208Long-form Identifiermindat:1:5:243208:7
GUID0
Full ReferenceKolitsch, U., Giester, G. (2000) The crystal structure of faustite and its copper analogue turquoise. Mineralogical Magazine, 64 (5) 905-913 doi:10.1180/002646100549733
Plain TextKolitsch, U., Giester, G. (2000) The crystal structure of faustite and its copper analogue turquoise. Mineralogical Magazine, 64 (5) 905-913 doi:10.1180/002646100549733
Abstract/NotesAbstractThe crystal structure of faustite, ZnAl6(PO4)4(OH)8.4H2O, was determined using single-crystal data (Mo-Kα X-radiation, CCD area detector, 1624 unique reflections, R1 = 4.91%, wR2 = 9.23%), and compared with results of a reinvestigation of the structure of its copper analogue turquoise, CuAl6(PO4)4(OH)8.4H2O (2737 unique reflections, R1 = 2.81%, wR2 = 6.90%). Both are isostructural and crystallize in space group P1̄, with a = 7.419(2) [turquoise: 7.410(1)], b = 7.629(3) [7.633(1)], c = 9.905(3) [9.904(1)] Å, α = 69.17(2) [68.42(1)], β = 69.88(2) [69.65(1)], γ = 64.98(2) [65.05(1)]°, V = 462.2(3) [460.27(10)] Å3, and Z = 1. The structure consists of distorted MO6 polyhedra (M = Zn, Cu), AlO6 octahedra and PO4 tetrahedra. By edge- and corner-sharing of these polyhedra a fairly dense three-dimensional framework is formed which is further strengthened by a system of hydrogen bonds. The metal atoms in the unique MO6 (M = Zn or Cu) polyhedron show a distorted [2+2+2]-coordination, the distortion being more pronounced in turquoise. About 10% of the M site is vacant in both minerals. In turquoise, a previously undetected structural site with a very low occupancy of (possibly) Cu is present at the position (Ý,0,Ý).

Mineral Pages

MineralCitation Details
Faustite
Turquoise


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 17, 2025 22:29:01
Go to top of page